cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A051473 a(n) = A028321(n)/2.

Original entry on oeis.org

3, 4, 18, 5, 23, 6, 189, 102, 420, 291, 41, 7, 711, 48, 1551, 605, 8, 281, 4433, 2574, 72, 9, 7007, 1456, 81, 10, 39039, 27924, 15834, 7014, 2370, 588, 82654, 66963, 43758, 22848, 9384, 2958, 111, 11, 149617, 110721, 66606, 32232, 12342, 122, 314925
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    T:= func< n, k | n le 1 select 1 else Binomial(n, k) + 3*Binomial(n-2, k-1) >; // T = A028323
    b:=[T(n, k): k in [1+Floor(n/2)..n], n in [0..100]];
    [b[n]/2: n in [1..150] | (b[n] mod 2) eq 0]; // G. C. Greubel, Jul 02 2024
    
  • Mathematica
    b:= Table[If[n<2, 1, Binomial[n,k] +3*Binomial[n-2,k-1]], {n,0,30}, {k, Floor[n/2]+1,n}]//Flatten;
    Select[b, EvenQ]/2 (* G. C. Greubel, Jul 02 2024 *)
  • SageMath
    def A028323(n, k): return binomial(n, k) + 3*binomial(n-2, k-1) - 3*int(n==0)
    b=flatten([[A028323(n, k) for k in range(1+(n//2),n+1)] for n in range(101)])
    [b[n]/2 for n in (1..150) if b[n]%2==0] # G. C. Greubel, Jul 02 2024

A028313 Elements in the 5-Pascal triangle (by row).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 6, 6, 1, 1, 7, 12, 7, 1, 1, 8, 19, 19, 8, 1, 1, 9, 27, 38, 27, 9, 1, 1, 10, 36, 65, 65, 36, 10, 1, 1, 11, 46, 101, 130, 101, 46, 11, 1, 1, 12, 57, 147, 231, 231, 147, 57, 12, 1, 1, 13, 69, 204, 378, 462, 378, 204, 69, 13, 1, 1, 14, 82, 273, 582, 840, 840, 582, 273, 82, 14, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  5,  1;
  1,  6,  6,   1;
  1,  7, 12,   7,   1;
  1,  8, 19,  19,   8,   1;
  1,  9, 27,  38,  27,   9,   1;
  1, 10, 36,  65,  65,  36,  10,  1;
  1, 11, 46, 101, 130, 101,  46, 11,  1;
  1, 12, 57, 147, 231, 231, 147, 57, 12,  1;
		

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else Binomial(n,k) +3*Binomial(n-2,k-1): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 05 2024
    
  • Mathematica
    Table[If[n<2, 1, Binomial[n,k] +3*Binomial[n-2,k-1]], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 05 2024 *)
  • SageMath
    def A028313(n,k): return 1 if n<2 else binomial(n,k) + 3*binomial(n-2,k-1)
    flatten([[A028313(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 05 2024

Formula

From Ralf Stephan, Jan 31 2005: (Start)
T(n, k) = C(n, k) + 3*C(n-2, k-1), with T(0, k) = T(1, k) = 1.
G.f.: (1 + 3*x^2*y)/(1 - x*(1+y)). (End)
From G. C. Greubel, Jan 05 2024: (Start)
T(n, n-k) = T(n, k).
T(n, n-1) = n + 3*(1 - [n=1]) = A178915(n+3), n >= 1.
T(n, n-2) = A051936(n+2), n >= 2.
T(n, n-3) = A051937(n+1), n >= 3.
T(2*n, n) = A028322(n).
Sum_{k=0..n} T(n, k) = A005009(n-2) - (3/4)*[n=0] - (3/2)*[n=1].
Sum_{k=0..n} (-1)^k * T(n, k) = A000007(n) - 3*[n=2].
Sum_{k=0..floor(n/2)} T(n-k, k) = A022112(n-2) + 3*([n=0] - [n=1]).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = 4*A010892(n) - 3*([n=0] + [n=1]). (End)

Extensions

More terms from Sam Alexander (pink2001x(AT)hotmail.com)

A028319 Distinct odd elements in the 5-Pascal triangle A028313.

Original entry on oeis.org

1, 5, 7, 19, 9, 27, 65, 11, 101, 57, 147, 231, 13, 69, 273, 15, 355, 855, 111, 451, 2277, 17, 127, 1661, 3487, 5379, 689, 2223, 11583, 833, 7371, 20449, 181, 995, 3745, 10283, 21385, 34463, 43615, 21, 201, 1377, 23, 1599, 7293, 267, 1843, 31977, 25
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    DeleteDuplicates[Table[If[n<2, 1, Binomial[n,k] +3*Binomial[n-2,k-1]], {n,0,30}, {k,0,n}]//Flatten]//Select[OddQ] (* G. C. Greubel, Jul 13 2024 *)
  • SageMath
    def A028323(n, k): return 1 if n<2 else binomial(n, k) + 3*binomial(n-2, k-1)
    b=flatten([[A028323(n, k) for k in range(n+1)] for n in range(31)])
    def a(seq): # order preserving
        nd = [] # no duplicates
        [nd.append(i) for i in seq if not nd.count(i) and i%2==1]
        return nd
    a(b) # A028319 # G. C. Greubel, Jul 13 2024

Extensions

More terms from James Sellers, Dec 08 1999

A028320 Distinct even elements in the 5-Pascal triangle A028313.

Original entry on oeis.org

6, 12, 8, 38, 10, 36, 46, 130, 204, 378, 462, 14, 82, 582, 840, 96, 1422, 1680, 16, 1210, 3102, 562, 6204, 18, 144, 5148, 8866, 162, 2912, 14014, 23166, 20, 1176, 4740, 14028, 31668, 55848, 78078, 87230, 22, 222, 5916, 18768, 45696, 87516, 133926
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    DeleteDuplicates[Table[If[n<2, 1, Binomial[n,k] +3*Binomial[n-2,k-1]], {n,0,30}, {k,0,n}]//Flatten]//Select[EvenQ] (* G. C. Greubel, Jul 13 2024 *)
  • SageMath
    def A028323(n, k): return 1 if n<2 else binomial(n, k) + 3*binomial(n-2, k-1)
    b=flatten([[A028323(n, k) for k in range(n+1)] for n in range(31)])
    def a(seq): # order preserving
        nd = [] # no duplicates
        [nd.append(i) for i in seq if not nd.count(i) and i%2==0]
        return nd
    a(b) # A028320 # G. C. Greubel, Jul 13 2024

Extensions

More terms from James Sellers, Dec 08 1999
Showing 1-4 of 4 results.