A028323 Elements to the right of the central elements of the 5-Pascal triangle A028313.
1, 1, 6, 1, 7, 1, 19, 8, 1, 27, 9, 1, 65, 36, 10, 1, 101, 46, 11, 1, 231, 147, 57, 12, 1, 378, 204, 69, 13, 1, 840, 582, 273, 82, 14, 1, 1422, 855, 355, 96, 15, 1, 3102, 2277, 1210, 451, 111, 16, 1, 5379, 3487, 1661, 562, 127, 17, 1, 11583, 8866, 5148, 2223, 689, 144, 18, 1
Offset: 0
Examples
This sequence represents the following portion of A028313(n,k), with x being the elements of A028313(2*n,n): x, ., 1, ., x, 1, ., ., 6, 1, ., ., x, 7, 1, ., ., .., 19, 8, 1, ., ., .., x, 27, 9, 1, ., .., .., .., 65, 36, 10, 1, ., .., .., ..., x, 101, 46, 11, 1, ., .., .., ..., ..., 231, 147, 57, 12, 1. As an irregular triangle this sequence begins as: 1; 1; 6, 1; 7, 1; 19, 8, 1; 27, 9, 1; 65, 36, 10, 1; 101, 46, 11, 1; 231, 147, 57, 12, 1; 378, 204, 69, 13, 1; 840, 582, 273, 82, 14, 1; 1422, 855, 355, 96, 15, 1; 3102, 2277, 1210, 451, 111, 16, 1;
Links
- G. C. Greubel, Rows n = 0..100 of the irregular triangle, flattened
Crossrefs
Cf. A028313.
Programs
-
Magma
A028323:= func< n,k | n eq 0 select 1 else Binomial(n+1, k + Floor((n+1)/2) + 1) + 3*Binomial(n-1, k + Floor((n+1)/2)) >; [A028323(n,k): k in [0..Floor(n/2)], n in [0..16]]; // G. C. Greubel, Jan 05 2024
-
Mathematica
T[n_, k_]:= Binomial[n+1, k +Floor[(n+1)/2] +1] + 3*Binomial[n-1, k+ Floor[(n+1)/2]] -3*Boole[n==0]; Table[T[n,k], {n,0,16}, {k,0,Floor[n/2]}]//Flatten (* G. C. Greubel, Jan 05 2024 *)
-
SageMath
def A028323(n,k): return binomial(n+1, k+1+(n+1)//2) + 3*binomial(n-1, k+((n+1)//2)) - 3*int(n==0) flatten([[A028323(n,k) for k in range(1+(n//2))] for n in range(17)]) # G. C. Greubel, Jan 05 2024
Formula
From G. C. Greubel, Jan 05 2024: (Start)
a(n) = A028313(n, k), for 1 + floor(n/2) <= k <= n, n >= 0.
T(n, k) = binomial(n+1, k + floor((n+1)/2) + 1) + 3*binomial(n-1, k + floor((n+1)/2)) -3*[n=0], for 0 <= k <= floor(n/2), n >= 0. (End)
Extensions
More terms from James Sellers