cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028323 Elements to the right of the central elements of the 5-Pascal triangle A028313.

Original entry on oeis.org

1, 1, 6, 1, 7, 1, 19, 8, 1, 27, 9, 1, 65, 36, 10, 1, 101, 46, 11, 1, 231, 147, 57, 12, 1, 378, 204, 69, 13, 1, 840, 582, 273, 82, 14, 1, 1422, 855, 355, 96, 15, 1, 3102, 2277, 1210, 451, 111, 16, 1, 5379, 3487, 1661, 562, 127, 17, 1, 11583, 8866, 5148, 2223, 689, 144, 18, 1
Offset: 0

Views

Author

Keywords

Examples

			This sequence represents the following portion of A028313(n,k), with x being the elements of A028313(2*n,n):
  x,
  .,  1,
  .,  x,  1,
  .,  .,  6,   1,
  .,  .,  x,   7,   1,
  .,  ., ..,  19,   8,   1,
  .,  ., ..,   x,  27,   9,   1,
  ., .., ..,  ..,  65,  36,  10,  1,
  ., .., .., ...,   x, 101,  46, 11,  1,
  ., .., .., ..., ..., 231, 147, 57, 12, 1.
As an irregular triangle this sequence begins as:
     1;
     1;
     6,    1;
     7,    1;
    19,    8,    1;
    27,    9,    1;
    65,   36,   10,   1;
   101,   46,   11,   1;
   231,  147,   57,  12,   1;
   378,  204,   69,  13,   1;
   840,  582,  273,  82,  14,  1;
  1422,  855,  355,  96,  15,  1;
  3102, 2277, 1210, 451, 111, 16,  1;
		

Crossrefs

Cf. A028313.

Programs

  • Magma
    A028323:= func< n,k | n eq 0 select 1 else Binomial(n+1, k + Floor((n+1)/2) + 1) + 3*Binomial(n-1, k + Floor((n+1)/2)) >;
    [A028323(n,k): k in [0..Floor(n/2)], n in [0..16]]; // G. C. Greubel, Jan 05 2024
    
  • Mathematica
    T[n_, k_]:= Binomial[n+1, k +Floor[(n+1)/2] +1] + 3*Binomial[n-1, k+ Floor[(n+1)/2]] -3*Boole[n==0];
    Table[T[n,k], {n,0,16}, {k,0,Floor[n/2]}]//Flatten (* G. C. Greubel, Jan 05 2024 *)
  • SageMath
    def A028323(n,k): return binomial(n+1, k+1+(n+1)//2) + 3*binomial(n-1, k+((n+1)//2)) - 3*int(n==0)
    flatten([[A028323(n,k) for k in range(1+(n//2))] for n in range(17)]) # G. C. Greubel, Jan 05 2024

Formula

From G. C. Greubel, Jan 05 2024: (Start)
a(n) = A028313(n, k), for 1 + floor(n/2) <= k <= n, n >= 0.
T(n, k) = binomial(n+1, k + floor((n+1)/2) + 1) + 3*binomial(n-1, k + floor((n+1)/2)) -3*[n=0], for 0 <= k <= floor(n/2), n >= 0. (End)

Extensions

More terms from James Sellers