A028324 Elements to the right of the central elements of the 5-Pascal triangle A028313 that are not 1.
6, 7, 19, 8, 27, 9, 65, 36, 10, 101, 46, 11, 231, 147, 57, 12, 378, 204, 69, 13, 840, 582, 273, 82, 14, 1422, 855, 355, 96, 15, 3102, 2277, 1210, 451, 111, 16, 5379, 3487, 1661, 562, 127, 17, 11583, 8866, 5148, 2223, 689, 144, 18, 20449, 14014, 7371, 2912, 833
Offset: 0
Examples
This sequence represents the following portion of A028313(n,k), with x being the elements of A028313(2*n,n): x; ., .; ., x, .; ., ., 6, .; ., ., x, 7, .; ., ., ., 19, 8, .; ., ., ., x, 27, 9, .; ., ., ., ., 65, 36, 10, .; ., ., ., ., x, 101, 46, 11, .; ., ., ., ., ., 231, 147, 57, 12, .; ., ., ., ., ., x, 378, 204, 69, 13, .; As an irregular triangle this sequence begins as: 6; 7; 19, 8; 27, 9; 65, 36, 10; 101, 46, 11; 231, 147, 57, 12; 378, 204, 69, 13; 840, 582, 273, 82, 14; 1422, 855, 355, 96, 15; 3102, 2277, 1210, 451, 111, 16; 5379, 3487, 1661, 562, 127, 17; 11583, 8866, 5148, 2223, 689, 144, 18;
Links
- G. C. Greubel, Rows n = 0..100 of the irregular triangle, flattened
Programs
-
Magma
A028324:= func< n,k | Binomial(n+3, k+2+Floor((n+1)/2)) + 3*Binomial(n+1, k+1+Floor((n+1)/2)) >; [A028324(n,k): k in [0..Floor(n/2)], n in [0..16]]; // G. C. Greubel, Jan 06 2024
-
Mathematica
T[n_, k_]:= Binomial[n+3, k+2+Floor[(n+1)/2]] + 3*Binomial[n+1, k+1 + Floor[(n+1)/2]]; Table[T[n,k], {n,0,16}, {k,0,Floor[n/2]}]//Flatten (* G. C. Greubel, Jan 06 2024 *)
-
SageMath
def A028324(n,k): return binomial(n+3, k+2+(n+1)//2) + 3*binomial(n+1, k+1+((n+1)//2)) flatten([[A028324(n,k) for k in range(1+(n//2))] for n in range(17)]) # G. C. Greubel, Jan 06 2024
Formula
T(n, k) = binomial(n+3, k + 2 + floor((n+1)/2)) + 3*binomial(n+1, k + 1 + floor((n+1)/2)), for 0 <= k <= floor(n/2), n >= 0. - G. C. Greubel, Jan 06 2024
Extensions
More terms from James Sellers