A028330 Elements to the right of the central elements of the even-Pascal triangle A028326.
2, 2, 6, 2, 8, 2, 20, 10, 2, 30, 12, 2, 70, 42, 14, 2, 112, 56, 16, 2, 252, 168, 72, 18, 2, 420, 240, 90, 20, 2, 924, 660, 330, 110, 22, 2, 1584, 990, 440, 132, 24, 2, 3432, 2574, 1430, 572, 156, 26, 2, 6006, 4004, 2002, 728, 182, 28, 2, 12870, 10010, 6006, 2730
Offset: 0
Examples
This sequence represents the following portion of A028330(n,k), with x being the elements of A028329(n): x; ., 2; ., x, 2; ., ., 6, 2; ., ., x, 8, 2; ., ., ., 20, 10, 2; ., ., ., x, 30, 12, 2; ., ., ., ., 70, 42, 14, 2; ., ., ., ., x, 112, 56, 16, 2; ., ., ., ., ., 252, 168, 72, 18, 2; ., ., ., ., ., x, 420, 240, 90, 20, 2; ., ., ., ., ., ., 924, 660, 330, 110, 22, 2; ., ., ., ., ., ., x, 1584, 990, 440, 132, 24, 2; As an irregular triangle: 2; 2; 6, 2; 8, 2; 20, 10, 2; 30, 12, 2; 70, 42, 14, 2; 112, 56, 16, 2; 252, 168, 72, 18, 2; 420, 240, 90, 20, 2; 924, 660, 330, 110, 22, 2;
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2549
Crossrefs
Programs
-
Magma
[[2*Binomial(n,k): k in [Floor((n+2)/2)..n]]: n in [1..12]]; // G. C. Greubel, Jul 14 2024
-
Mathematica
Table[2*Binomial[n+1, k+1 +Floor[(n+1)/2]], {n,0,12}, {k,0,Floor[n/2] }]//Flatten (* G. C. Greubel, Jul 14 2024 *)
-
SageMath
def A028326(n,k): return 2*binomial(n, k) flatten([[A028326(n,k) for k in range(((n+2)//2), n+1)] for n in range(1,21)]) # G. C. Greubel, Jul 14 2024
Formula
a(n) = 2 * A014413(n). - Sean A. Irvine, Dec 29 2019
From G. C. Greubel, Jul 14 2024: (Start)
T(n, k) = 2*binomial(n+1, k+1 + floor((n+1)/2)) for n >= 0, 0 <= k <= floor(n/2).
Extensions
More terms from James Sellers