cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028330 Elements to the right of the central elements of the even-Pascal triangle A028326.

Original entry on oeis.org

2, 2, 6, 2, 8, 2, 20, 10, 2, 30, 12, 2, 70, 42, 14, 2, 112, 56, 16, 2, 252, 168, 72, 18, 2, 420, 240, 90, 20, 2, 924, 660, 330, 110, 22, 2, 1584, 990, 440, 132, 24, 2, 3432, 2574, 1430, 572, 156, 26, 2, 6006, 4004, 2002, 728, 182, 28, 2, 12870, 10010, 6006, 2730
Offset: 0

Views

Author

Keywords

Examples

			This sequence represents the following portion of A028330(n,k), with x being the elements of A028329(n):
  x;
  .,  2;
  .,  x,  2;
  .,  .,  6,  2;
  .,  .,  x,  8,  2;
  .,  .,  ., 20, 10,   2;
  .,  .,  .,  x, 30,  12,   2;
  .,  .,  .,  ., 70,  42,  14,    2;
  .,  .,  .,  .,  x, 112,  56,   16,   2;
  .,  .,  .,  .,  ., 252, 168,   72,  18,   2;
  .,  .,  .,  .,  .,   x, 420,  240,  90,  20,   2;
  .,  .,  .,  .,  .,   ., 924,  660, 330, 110,  22,  2;
  .,  .,  .,  .,  .,   .,   x, 1584, 990, 440, 132, 24, 2;
As an irregular triangle:
    2;
    2;
    6,   2;
    8,   2;
   20,  10,   2;
   30,  12,   2;
   70,  42,  14,   2;
  112,  56,  16,   2;
  252, 168,  72,  18,  2;
  420, 240,  90,  20,  2;
  924, 660, 330, 110, 22,  2;
		

Crossrefs

Programs

  • Magma
    [[2*Binomial(n,k): k in [Floor((n+2)/2)..n]]: n in [1..12]]; // G. C. Greubel, Jul 14 2024
    
  • Mathematica
    Table[2*Binomial[n+1, k+1 +Floor[(n+1)/2]], {n,0,12}, {k,0,Floor[n/2] }]//Flatten (* G. C. Greubel, Jul 14 2024 *)
  • SageMath
    def A028326(n,k): return 2*binomial(n, k)
    flatten([[A028326(n,k) for k in range(((n+2)//2), n+1)] for n in range(1,21)]) # G. C. Greubel, Jul 14 2024

Formula

a(n) = 2 * A014413(n). - Sean A. Irvine, Dec 29 2019
From G. C. Greubel, Jul 14 2024: (Start)
T(n, k) = 2*binomial(n+1, k+1 + floor((n+1)/2)) for n >= 0, 0 <= k <= floor(n/2).
Sum_{k=0..floor(n/2)} T(n, k) = A202736(n+1) = 2*A058622(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n, k) = 2*A001405(n) = A063886(n+1). (End)

Extensions

More terms from James Sellers