cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A034307 Numbers n such that there are no oblong (promic) palindromes of length n.

Original entry on oeis.org

2, 5, 9, 12, 18, 20, 30, 34
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1998

Keywords

Crossrefs

A028337 Palindromes of the form n(n+1).

Original entry on oeis.org

2, 6, 272, 6006, 289982, 2629262, 6039306, 27999972, 28233282, 2704884072, 20278187202, 20591819502, 2592587852952, 2936231326392, 21809166190812, 27237788773272, 229145919541922, 233552101255332, 250087292780052, 2243922442293422, 2570769009670752, 20333113431133302, 27785925652958772
Offset: 1

Views

Author

Keywords

Examples

			272 belongs to the sequence as 272 = 16*17 is a palindrome.
		

Crossrefs

Cf. A028336.

Programs

  • Mathematica
    Select[2*Accumulate[Range[15820000]],IntegerDigits[#] == Reverse[ IntegerDigits[#]]&] (* Harvey P. Dale, Sep 03 2013 *)
  • Python
    A028337_list, n = [], 0
    for i in range(2,10**6,2):
        n += i
        s = str(n)
        if s == s[::-1]:
            A028337_list.append(n) # Chai Wah Wu, Jan 15 2015

Extensions

a(20)-a(23) from G. C. Greubel, Nov 04 2017

A028413 Numbers k such that k^2 + k + 1 is a palindrome.

Original entry on oeis.org

0, 1, 2, 10, 18, 27, 100, 125, 173, 1000, 1120, 1184, 1355, 1836, 1876, 1961, 10000, 11915, 100000, 119084, 126935, 187876, 188348, 192383, 196813, 1000000, 1010200, 1190915, 1228425, 1780728, 1821636, 1975356, 10000000, 11842184, 12643549, 12783239, 18016058
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits[n]}, d == Reverse[d]]; f[n_] := n^2 + n + 1; Select[Range[0, 10^5], palQ@ f@ # &] (* Giovanni Resta, Aug 29 2018 *)

Extensions

More terms from Giovanni Resta, Aug 28 2018

A028555 Numbers k such that k*(k+4) is a palindrome.

Original entry on oeis.org

0, 1, 7, 14, 21, 33, 44, 144, 235, 269, 524, 1123, 1452, 1582, 5412, 8338, 8459, 11063, 11223, 23255, 73491, 145544, 262808, 266737, 281349, 1659022, 2705669, 3504083, 5040882, 7395091, 8308388, 14554452, 85559327, 110651063, 223674495, 277945157, 282442347
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 9999], PalindromeQ[#^2 + 4#] &] (* Alonso del Arte, Nov 10 2019 *)
  • Python
    from itertools import count, islice
    def ispal(n): s = str(n); return s == s[::-1]
    def agen():
        for k in count(0):
            if ispal(k*(k+4)):
                yield k
    print(list(islice(agen(), 32))) # Michael S. Branicky, Jan 25 2022
  • Scala
    def palQ(n: Int, b: Int = 10): Boolean = n - Integer.parseInt(n.toString.reverse) == 0
    (0 to 9999).filter((n: Int) => palQ(n * n + 4 * n)) // Alonso del Arte, Nov 10 2019
    

Extensions

a(33) and beyond from Michael S. Branicky, Jan 25 2022
Showing 1-4 of 4 results.