A028356 Simple periodic sequence underlying clock sequence A028354.
1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4
Offset: 0
References
- Zdeněk Horský, "Pražský orloj" ("The Astronomical Clock of Prague", in Czech), Panorama, Prague, 1988, pp. 76-78.
Links
- Michal Křížek, Alena Šolcová and Lawrence Somer, Construction of Šindel sequences, Comment. Math. Univ. Carolin., 48 (2007), 373-388.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1).
Crossrefs
Programs
-
Magma
&cat [[1, 2, 3, 4, 3, 2]^^20]; // Klaus Brockhaus, May 15 2010
-
Maple
A028356:=n->[1, 2, 3, 4, 3, 2][(n mod 6)+1]: seq(A028356(n), n=0..100); # Wesley Ivan Hurt, Jun 23 2016
-
Mathematica
CoefficientList[ Series[(1 + 2x + 3x^2 + 4x^3 + 3x^4 + 2x^5)/(1 - x^6), {x, 0, 85}], x] LinearRecurrence[{1,0,-1,1},{1,2,3,4},120] (* or *) PadRight[{},120,{1,2,3,4,3,2}] (* Harvey P. Dale, Apr 15 2016 *)
-
Python
def A028356(n): return (1,2,3,4,3,2)[n%6] # Chai Wah Wu, Apr 18 2024
-
Sage
def A(): a, b, c, d = 1, 2, 3, 4 while True: yield a a, b, c, d = b, c, d, a + (d - b) A028356 = A(); [next(A028356) for n in range(106)] # Peter Luschny, Jul 26 2014
Formula
Sum of any six successive terms is 15.
G.f.: (1 + 2*x + 3*x^2 + 4*x^3 + 3*x^4 + 2*x^5)/(1 - x^6).
From Wesley Ivan Hurt, Jun 23 2016: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4) for n>3.
a(n) = (15 - cos(n*Pi) - 8*cos(n*Pi/3))/6. (End)
E.g.f.: (15*exp(x) - exp(-x) - 8*cos(sqrt(3)*x/2)*(sinh(x/2) + cosh(x/2)))/6. - Ilya Gutkovskiy, Jun 23 2016
a(n) = abs(((n+3) mod 6)-3) + 1. - Daniel Jiménez, Jan 14 2023
Extensions
Additional comments from Robert G. Wilson v, Mar 01 2002
Comments