cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028388 Good primes (version 2): prime(n) such that prime(n)^2 > prime(n-i)*prime(n+i) for all 1 <= i <= n-1.

Original entry on oeis.org

5, 11, 17, 29, 37, 41, 53, 59, 67, 71, 97, 101, 127, 149, 179, 191, 223, 227, 251, 257, 269, 307, 311, 331, 347, 419, 431, 541, 557, 563, 569, 587, 593, 599, 641, 727, 733, 739, 809, 821, 853, 929, 937, 967, 1009, 1031, 1087, 1151, 1213, 1277
Offset: 1

Views

Author

Keywords

Comments

Selfridge conjectured, and Pomerance proved, that there are infinitely many numbers in this sequence. Pomerance asks if the sequence has density 0. - Charles R Greathouse IV, Apr 14 2011

References

  • Guy, R. K. `Good' Primes and the Prime Number Graph. A14 in Unsolved Problems in Number Theory, 2nd ed. Springer-Verlag, pp. 32-33, 1994.

Crossrefs

Cf. A046869.

Programs

  • Magma
    [NthPrime(n): n in [2..220] | forall{i: i in [1..n-1] | NthPrime(n)^2 gt NthPrime(n-i)*NthPrime(n+i)}]; // Bruno Berselli, Oct 23 2012
    
  • Mathematica
    Module[{nn=300,prs},prs=Prime[Range[2nn]];qprQ[n_]:=Module[{pi= PrimePi[n]}, n^2>Max[Times@@@Thread[{Take[prs,pi-1],Reverse[Take[ prs,{pi+1,2 pi-1}]]}]]];Select[Take[prs,nn],qprQ]] (* Harvey P. Dale, May 13 2012 *)
  • PARI
    is(n)=if(!isprime(n),return(0));my(p=n,q=n,n2=n^2);while(p>2, p=precprime(p-1); q=nextprime(q+1); if(n22 \\ Charles R Greathouse IV, Jul 02 2013