cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A130903 Bad primes (version 2). Primes not in A028388.

Original entry on oeis.org

2, 3, 7, 13, 19, 23, 31, 43, 47, 61, 73, 79, 83, 89, 103, 107, 109, 113, 131, 137, 139, 151, 157, 163, 167, 173, 181, 193, 197, 199, 211, 229, 233, 239, 241, 263, 271, 277, 281, 283, 293, 313, 317, 337, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 421
Offset: 1

Views

Author

Jonathan Vos Post, Aug 22 2007

Keywords

Crossrefs

Programs

  • Maple
    isA028388 := proc(p) local a,n,pmin,pplu; if isprime(p) then a := true ; if p < 5 then RETURN(false) ; fi ; pmin := p ; pplu := p ; while pmin > 2 do pmin := prevprime(pmin) ; pplu := nextprime(pplu) ; if p^2 <= pmin*pplu then a := false ; break ; fi ; od: RETURN(a) ; else RETURN(false) ; fi ; end: isA130903 := proc(p) if not isprime(p) then RETURN(false) ; else RETURN(not isA028388(p)) ; fi ; end: for i from 1 to 100 do p := ithprime(i) ; if isA130903(p) then printf("%d,",p) ; fi ; od: # R. J. Mathar, Sep 02 2007

Formula

{p in A000040 and p not in A028388}.

Extensions

Corrected and extended by R. J. Mathar, Sep 02 2007

A095957 a(n) is the smallest prime of earlier set of n consecutive good primes version 2 (see A028388).

Original entry on oeis.org

5, 37, 557, 1847, 216703, 6929381, 134193727, 15118087477
Offset: 1

Views

Author

Keywords

References

  • Puzzle 273 of The Prime Puzzles & Problem Connection (www.primepuzzles.net).

Crossrefs

Extensions

a(7) found by Jim Fougeron (jfoug(AT)kdsi.net), Aug 25 2004

A172166 Partial sums of A028388 good primes (version 2).

Original entry on oeis.org

5, 16, 33, 62, 99, 140, 193, 252, 319, 390, 487, 588, 715, 864, 1043, 1234, 1457, 1684, 1935, 2192, 2461, 2768, 3079, 3410, 3757, 4176, 4607, 5148, 5705, 6268, 6837, 7424, 8017, 8616, 9257, 9984, 10717, 11456, 12265, 13086, 13939, 14868, 15805, 16772
Offset: 1

Views

Author

Jonathan Vos Post, Jan 27 2010

Keywords

Comments

Prime partial sums of good primes begin a(1) = 5, a(7) = 193, a(11) = 487, a(23) = 3079. Good prime partial sums of good primes begin a(1) = 5, and what are the next of that subsequence?

Examples

			a(20) = 5 + 11 + 17 + 29 + 37 + 41 + 53 + 59 + 67 + 71 + 97 + 101 + 127 + 149 + 179 + 191 + 223 + 227 + 251 + 257 = 2192.
		

Crossrefs

Formula

a(n) = SIM[i=1..n] {p_n such that (p_n)^2 > p_{n-i}p_{n+i} for all 1 <= i <= n-1}.

Extensions

More terms from R. J. Mathar, Jan 30 2010

A046869 Good primes (version 1): prime(n)^2 > prime(n-1)*prime(n+1).

Original entry on oeis.org

5, 11, 17, 29, 37, 41, 53, 59, 67, 71, 79, 97, 101, 107, 127, 137, 149, 157, 163, 173, 179, 191, 197, 211, 223, 227, 239, 251, 257, 263, 269, 277, 281, 307, 311, 331, 347, 367, 373, 379, 397, 419, 431, 439, 457, 461, 479, 487, 499, 521, 541
Offset: 1

Views

Author

Keywords

Comments

Also called geometrically strong primes. - Amarnath Murthy, Mar 08 2002
The idea can be extended by defining a geometrically strong prime of order k to be a prime that is greater than the geometric mean of r neighbors on both sides for all r = 1 to k but not for r = k+1. Similar generalizations can be applied to the sequence A051634. - Amarnath Murthy, Mar 08 2002
It appears that a(n) ~ 2*prime(n). - Thomas Ordowski, Jul 25 2012
Conjecture: primes p(n) such that 2*p(n) >= p(n-1) + p(n+1). - Thomas Ordowski, Jul 25 2012
Probably {3,7,23} U {good primes} = {primes p(n) > 2/(1/p(n-1) + 1/p(n+1))}. - Thomas Ordowski, Jul 27 2012
Except for A001359(1), A001359 is a subsequence. - Chai Wah Wu, Sep 10 2019

Examples

			37 is a member as 37^2 = 1369 > 31*41 = 1271.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section A14.

Crossrefs

Programs

  • Magma
    [NthPrime(n): n in [2..100] | NthPrime(n)^2 gt NthPrime(n-1)*NthPrime(n+1)]; // Bruno Berselli, Oct 23 2012
  • Maple
    with(numtheory): a := [ ]: P := [ ]: M := 300: for i from 2 to M do if p(i)^2>p(i-1)*p(i+1) then a := [ op(a),i ]; P := [ op(P),p(i) ]; fi; od: a; P;
  • Mathematica
    Do[ If[ Prime[n]^2 > Prime[n - 1]*Prime[n + 1], Print[ Prime[n] ] ], {n, 2, 100} ]
    Transpose[Select[Partition[Prime[Range[300]],3,1],#[[2]]^2>#[[1]]#[[3]]&]][[2]] (* Harvey P. Dale, May 13 2012 *)
    Select[Prime[Range[2, 100]], #^2 > NextPrime[#]*NextPrime[#, -1] &] (* Jayanta Basu, Jun 29 2013 *)
  • PARI
    forprime(n=o=p=3,999,o+0<(o=p)^2/(p=n) & print1(o", "))
    isA046869(p)={ isprime(p) & p^2>precprime(p-1)*nextprime(p+1) } \\ M. F. Hasler, Jun 15 2011
    

Extensions

Corrected and extended by Robert G. Wilson v, Dec 06 2000
Edited by N. J. A. Sloane at the suggestion of Giovanni Resta, Aug 20 2007

A197297 The Riemann primes of the theta type and index 1.

Original entry on oeis.org

2, 5, 7, 11, 17, 29, 37, 41, 53, 59, 97, 127, 137, 149, 191, 223, 307, 331, 337, 347, 419, 541, 557, 809, 967, 1009, 1213, 1277, 1399, 1409, 1423, 1973, 2203, 2237, 2591, 2609, 2617, 2633, 2647, 2657, 3163, 3299, 4861, 4871, 4889, 4903, 4931, 5381, 7411
Offset: 1

Views

Author

Michel Planat, Oct 13 2011

Keywords

Comments

The sequence consists of the prime numbers p that are champions (left to right maxima) of the function |theta(p)-p|, where theta(p) is the Chebyshev theta function.

Crossrefs

Equivalent sequences for other indices: A197298(2), A197299(3), A197300(4).

Programs

  • Perl
    use ntheory ":all"; my($max,$f)=(0); forprimes { $f=abs(chebyshev_theta($)-$); if ($f > $max) { say; $max=$f; } } 10000; # Dana Jacobsen, Dec 29 2015

A021005 Let q_k=p(p+2) be product of k-th pair of twin primes; sequence gives values of p such that (q_k)^2 > q_{k-i}q_{k+i} for all 1 <= i <= k-1.

Original entry on oeis.org

3, 11, 29, 59, 101, 137, 179, 191, 227, 419, 521, 569, 599, 809, 821, 1019, 1229, 1277, 1289, 1607, 1667, 1871, 2081
Offset: 1

Views

Author

Keywords

Examples

			E.g. (11*13)^2 > (5*7)*(17*19): (11*13)^2 > (3*5)*(29*31).
		

Crossrefs

Programs

  • PARI
    twins=List(); p=3;forprime(q=5,1e5,if(q-p==2,listput(twins,q)); p=q); for(k=1,(#twins+1)\2, for(i=1,k-1,if(twins[k]^2 < twins[k-i]*twins[k+i],next(2))); print1(twins[k]-2", ")) \\ Charles R Greathouse IV, Apr 02 2014

Extensions

a(1) inserted by Charles R Greathouse IV, Apr 02 2014

A021007 Let q_k = p*(p+2) be product of k-th pair of twin primes; sequence gives values of p+2 such that (q_k)^2 > q_{k-i}*q_{k+i} for all 1 <= i <= k-1.

Original entry on oeis.org

5, 13, 31, 61, 103, 139, 181, 193, 229, 421, 523, 571, 601, 811, 823, 1021, 1231, 1279, 1291, 1609, 1669, 1873, 2083, 2551, 2659, 2689, 2971, 3121, 3253, 3331, 3361, 3769, 3823, 3919, 4003, 5233, 5419, 5479, 6091, 6271, 6553, 6661, 6691, 8221, 8821, 8971
Offset: 1

Views

Author

Keywords

Comments

Even if there are infinitely many twin primes, it is not clear that this sequence is infinite. The Hardy-Littlewood conjecture implies that there are infinitely many twin primes where p+2 is not in the sequence. - Robert Israel, Apr 02 2014

Examples

			(11*13)^2 > (5*7)*(17*19): (11*13)^2 > (3*5)*(29*31).
		

Crossrefs

Programs

  • Maple
    N:= 20000:
    Primes:= [seq(ithprime(i),i=1..N)]:
    Twink:= select(t-> (Primes[t+1]=Primes[t]+2),[$1..N-1]):
    Qk:= [seq(Primes[i]*Primes[i+1],i=Twink)]:
    filter:= proc(k)
       local T,i;
       T:= Qk[k]^2;
       for i from 1 to k-1 do
         if Qk[k-i]*Qk[k+i]>=T then return false fi
       od;
       true
    end;
    R:= select(filter,[$1 .. floor(nops(Twink)/2)]):
    A021007:= map(k -> Primes[Twink[k]+1],R); # Robert Israel, Apr 02 2014
  • PARI
    twins=List(); p=3;forprime(q=5,1e5,if(q-p==2,listput(twins,q)); p=q); for(k=1,(#twins+1)\2, for(i=1,k-1,if(twins[k]^2 < twins[k-i]*twins[k+i],next(2))); print1(twins[k]", ")) \\ Charles R Greathouse IV, Apr 02 2014

Extensions

a(1) inserted by Robert Israel, Apr 02 2014

A096473 Palindromic good primes.

Original entry on oeis.org

5, 11, 101, 191, 727, 929, 30803, 74047, 77477, 1123211, 1150511, 1338331, 1444441, 1684861, 1761671, 3065603, 3392933, 3503053, 3541453, 9779779, 9845489, 9926299, 9927299, 9932399, 112959211, 113030311, 114535411, 119676911
Offset: 1

Views

Author

Farideh Firoozbakht, Jun 28 2004

Keywords

Comments

p is in the sequence iff p is in the sequences A028388 and A002385.
Thus, version 2 (A028388) of the definition of "good primes" is used here. - Harvey P. Dale, May 13 2012

Examples

			11 is in the sequence because 11 is a palindromic number which is a good prime (11^2>7*13, 11^2>5*17, 11^2>3*19 & 11^2>2*23).
		

Crossrefs

Programs

  • Mathematica
    b[n_]:=(For[m=1, mPrime[n-m]Prime[n+m], m++ ];m); v={};Do[If[IntegerDigits[Prime[n]]==Reverse[IntegerDigits[Prime [n]]]&& b[n]==n, v=Append[v, Prime[n]];Print[v]], {n, 6986301}]

A127925 Primes p such that 2p < prime(k-i) + prime(k+i) for i=1..k-1, where p=prime(k).

Original entry on oeis.org

3, 7, 19, 23, 43, 47, 73, 109, 113, 199, 283, 293, 313, 317, 463, 467, 503, 509, 523, 619, 661, 683, 691, 887, 1063, 1069, 1109, 1129, 1303, 1307, 1321, 1327, 1613, 1621, 1627, 1637, 1669, 1789, 2143, 2161, 2383, 2393, 2399, 2477, 2731, 2753, 2803, 2861, 2971
Offset: 1

Views

Author

T. D. Noe, Feb 06 2007

Keywords

Comments

One of several sets of "good primes" in section A14 of Guy.
McNew calls these numbers "midpoint convex primes". - Peter Munn, Jul 04 2025

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd ed. Springer, 2004.

Crossrefs

Cf. A028388.
A246033 is a subset.
Subset of A124661, A178954.

Programs

  • Mathematica
    t={}; n=1; While[Length[t]<100, n++; p=Prime[n]; i=1; While[i
    				

A095924 a(n) is the smallest prime of earliest set of at least n consecutive good primes version 1 (see A046869).

Original entry on oeis.org

5, 37, 211, 251, 32467, 96377, 96377, 5647409, 12285587, 202924901, 3916407479, 108233238469, 1279155333257
Offset: 1

Views

Author

Enoch Haga and Farideh Firoozbakht, Jul 12 2004

Keywords

Examples

			A good prime (version 1) is a prime p = prime(n) such that prime(n)^2 > prime(n-1)*prime(n+1), so 5 is a good prime because 5 = prime(3); prime(2) = 3; prime(4) = 7 and 5^2 > 3*7.
a(11) = 3916407479 because the 11 consecutive primes 3916407479, 3916407527, 3916407569, 3916407611, 3916407653, 3916407679, 3916407697, 3916407713, 3916407727, 3916407739 and 3916407751 are good primes and 3916407479 is the smallest prime with this property.
		

Crossrefs

Programs

  • PARI
    lista(pmax) = {my(c = 0, cmax = 0, p1 = 2, p2 = 3, p); forprime(p3 = 5, pmax, if(p2^2 > p1*p3, c++, if(c > cmax, p = p1; for(i = 1, c-1, p = precprime(p-1)); for(i = 1, c-cmax, print1(p, ", ")); cmax = c); c = 0); p1 = p2; p2 = p3);} \\ Amiram Eldar, Apr 29 2024

Extensions

Name clarified and a(12)-a(13) added by Amiram Eldar, Apr 29 2024
Showing 1-10 of 11 results. Next