cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A028393 Iterate the map in A006368 starting at 8.

Original entry on oeis.org

8, 12, 18, 27, 20, 30, 45, 34, 51, 38, 57, 43, 32, 48, 72, 108, 162, 243, 182, 273, 205, 154, 231, 173, 130, 195, 146, 219, 164, 246, 369, 277, 208, 312, 468, 702, 1053, 790, 1185, 889, 667, 500, 750, 1125, 844, 1266, 1899, 1424, 2136, 3204, 4806, 7209, 5407
Offset: 0

Views

Author

Keywords

Comments

It is conjectured that this trajectory never repeats, but no proof of this has been found. - N. J. A. Sloane, Jul 14 2009

References

  • J. H. Conway, Unpredictable iterations, in Proc. Number Theory Conf., Boulder, CO, 1972, pp. 49-52. - N. J. A. Sloane, Oct 04 2012
  • R. K. Guy, Unsolved Problems in Number Theory, E17. - N. J. A. Sloane, Oct 04 2012
  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 5. [From N. J. A. Sloane, Jan 21 2011]

Crossrefs

Programs

  • Haskell
    a028393 n = a028393_list !! n
    a028393_list = iterate a006368 8  -- Reinhard Zumkeller, Apr 18 2012
    
  • Maple
    F := proc(n) option remember; if n = 0 then 8 elif 3*F(n-1) mod 2 = 0 then 3*F(n-1)/2 else round(3*F(n-1)/4); fi; end; [ seq(F(i),i=0..80) ];
  • Mathematica
    f[n_?EvenQ] := 3*n/2; f[n_] := Round[3*n/4]; a[0] = 8; a[n_] := a[n] = f[a[n - 1]]; Table[a[n], {n, 0, 52}]  (* Jean-François Alcover, Jun 10 2013 *)
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def F(n):
        if n == 0: return 8
        elif 3*F(n-1)%2 == 0: return 3*F(n-1)//2
        else: return (3*F(n-1)+1)//4
    print([F(i) for i in range(81)]) # Michael S. Branicky, Aug 12 2021 after J. H. Conway

Formula

a(n+1) = A006368(a(n)).

A028395 Iterate the map in A006368 starting at 14.

Original entry on oeis.org

14, 21, 16, 24, 36, 54, 81, 61, 46, 69, 52, 78, 117, 88, 132, 198, 297, 223, 167, 125, 94, 141, 106, 159, 119, 89, 67, 50, 75, 56, 84, 126, 189, 142, 213, 160, 240, 360, 540, 810, 1215, 911, 683, 512, 768, 1152, 1728, 2592, 3888, 5832, 8748, 13122, 19683
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A028393.
Cf. A180853, A180864, A182205; A028398(5) = 14.

Programs

  • Haskell
    a028395 n = a028395_list !! n
    a028395_list = iterate a006368 14  -- Reinhard Zumkeller, Apr 18 2012
  • Mathematica
    SubstitutionSystem[{n_ :> If[EvenQ[n], 3n/2, Round[3n/4]]}, {14}, 60] // Flatten (* Jean-François Alcover, Mar 01 2019 *)

Formula

a(n+1) = A006368(a(n)).

A180853 Trajectory of 4 under map n->A006368(n).

Original entry on oeis.org

4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5, 4, 6, 9, 7, 5
Offset: 0

Views

Author

N. J. A. Sloane, Jan 22 2011

Keywords

Comments

The trajectory of 8 is a famous unsolved problem - see A028393.

References

  • D. Gale, Tracking the Automatic Ant and Other Mathematical Explorations, A Collection of Mathematical Entertainments Columns from The Mathematical Intelligencer, Springer, 1998; see p. 16.

Crossrefs

Programs

Formula

Periodic with period of length 5.
G.f.: ( -4-6*x-9*x^2-7*x^3-5*x^4 ) / ( (x-1)*(1+x+x^2+x^3+x^4) ). - R. J. Mathar, Mar 10 2011
a(n+1) = A006368(a(n)).
a(n) = a(n-5). - Wesley Ivan Hurt, Apr 26 2021

A182205 Iterate the map in A006368 starting at 40.

Original entry on oeis.org

40, 60, 90, 135, 101, 76, 114, 171, 128, 192, 288, 432, 648, 972, 1458, 2187, 1640, 2460, 3690, 5535, 4151, 3113, 2335, 1751, 1313, 985, 739, 554, 831, 623, 467, 350, 525, 394, 591, 443, 332, 498, 747, 560, 840, 1260, 1890, 2835, 2126, 3189, 2392, 3588, 5382
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 18 2012

Keywords

Comments

Like for iterations with starting points 8 or 14, it is conjectured that also this trajectory never repeats.

References

  • D. Gale, Tracking the Automatic Ant and Other Mathematical Explorations, A Collection of Mathematical Entertainments Columns from The Mathematical Intelligencer, Springer, 1998; see p. 16.

Crossrefs

Programs

  • Haskell
    a182205 n = a182205_list !! n
    a182205_list = iterate a006368 40
  • Mathematica
    SubstitutionSystem[{n_ :> If[EvenQ[n], 3 n/2, Round[3 n/4]]}, {40}, 60] // Flatten (* Jean-François Alcover, Mar 01 2019 *)

Formula

a(n+1) = A006368(a(n)), with a(0) = 40.
Showing 1-4 of 4 results.