cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028403 Number of types of Boolean functions of n variables under a certain group.

Original entry on oeis.org

4, 12, 40, 144, 544, 2112, 8320, 33024, 131584, 525312, 2099200, 8392704, 33562624, 134234112, 536903680, 2147549184, 8590065664, 34360000512, 137439477760, 549756862464, 2199025352704, 8796097216512, 35184380477440, 140737505132544, 562949986975744
Offset: 1

Views

Author

Keywords

Crossrefs

This sequence in base 2 is A163450. - Jaroslav Krizek, Jul 27 2009

Programs

  • Magma
    [2^(2*n-1) +2^n: n in [1..30]]; // G. C. Greubel, Jul 07 2021
    
  • Mathematica
    Join[{4},Table[FromDigits[Join[{1},PadRight[{},n-2,0],{1},PadRight[ {},n,0]],2],{n,2,30}]] (* Harvey P. Dale, Jan 24 2021 *)
  • PARI
    Vec(4*x*(1-3*x)/((1-2*x)*(1-4*x)) + O(x^100)) \\ Colin Barker, Sep 30 2014
    
  • Sage
    [2^(2*n-1) +2^n for n in (1..30)] # G. C. Greubel, Jul 07 2021

Formula

a(n) = (2^(n-1) + 1)*2^n = 2*A007582(n-1). - Ralf Stephan, Mar 24 2004
a(n) = A000079(n) * (A000079(n-1) + 1) = (A000051(n) - 1) * A000051(n-1) = A000079(n) * A000051(n-1) = (A000051(n) - 1) * (A000079(n-1) + 1) = 2^n * (2^(n-1) + 1). a(n+1) = A000079(n+1) * (A000079(n) + 1) = (A000051(n+1) - 1) * A000051(n) = A000079(n+1) * A000051(n) = (A000051(n+1) - 1) * (A000079(n) + 1) = 2^(n+1) * (2^n + 1). a(n) = A081294(n) + A000079(n) = A004171(n-1) + A000079(n) = 2^(2n-1) + 2^n. - Jaroslav Krizek, Jul 27 2009
From Colin Barker, Sep 30 2014: (Start)
a(n) = 6*a(n-1) - 8*a(n-2).
G.f.: 4*x*(1 - 3*x)/((1-2*x)*(1-4*x)). (End)
E.g.f.: (1/2)*(exp(2*x) -1)*(exp(2*x) + 3). - G. C. Greubel, Jul 07 2021

Extensions

More terms from Vladeta Jovovic, Feb 24 2000
More terms from Colin Barker, Sep 30 2014