A028416 Primes p such that the decimal expansion of 1/p has a periodic part of even length.
7, 11, 13, 17, 19, 23, 29, 47, 59, 61, 73, 89, 97, 101, 103, 109, 113, 127, 131, 137, 139, 149, 157, 167, 179, 181, 193, 197, 211, 223, 229, 233, 241, 251, 257, 263, 269, 281, 293, 313, 331, 337, 349, 353, 367, 373, 379, 383, 389, 401, 409, 419, 421, 433
Offset: 1
Examples
From _Reinhard Zumkeller_, Oct 05 2008: (Start) (0,5,8,8,2,3,5,2,9,4,1,1,7,6,4,7) is the period of 1/17 (see A007450), K = A002371(A049084(17))/2 = A002371(7)/2 = 16/2 = 8, u = 5882352, v = 94117647: u + v = 99999999 = 10^8 - 1. (End)
References
- H. Rademacher and O. Toeplitz, Von Zahlen und Figuren (Springer 1930, reprinted 1968), ch. 19, "Die periodischen Dezimalbrueche". [Reinhard Zumkeller, Oct 05 2008]
Links
Programs
-
Maple
A028416 := proc(n) local st: st := ithprime(n): if (modp(numtheory[order](10,st),2) = 0) then RETURN(st) fi: end: seq(A028416(n), n=1..100); # Jani Melik, Feb 24 2011
-
Mathematica
Select[Prime[Range[4,100]],EvenQ[Length[RealDigits[1/#][[1,1]]]]&] (* Harvey P. Dale, Jul 07 2011 *)
-
PARI
forprime(p=7,1e3,if(znorder(Mod(10,p))%2==0,print1(p", "))) \\ Charles R Greathouse IV, Feb 24 2011
-
Python
from sympy import gcd, isprime, n_order is_A028416 = lambda n: gcd(n,10)==1 and n>5 and n_order(10, n)%2==0 and isprime(n) # M. F. Hasler, Nov 19 2024
Extensions
More terms from Reinhard Zumkeller, Jul 29 2003
Comments