A086998 Duplicate of A028416.
7, 11, 13, 17, 19, 23, 29, 47, 59, 61, 73, 89, 97, 101, 103, 109, 113, 127, 131, 137, 139
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
0.142857142857142857...
I:=[1,4,2,8]; [n le 4 select I[n] else Self(n-1)-Self(n-3)+Self(n-4): n in [1..100]]; // Vincenzo Librandi, Mar 27 2015
Digits:=100: evalf(1/7); # Wesley Ivan Hurt, Jun 28 2016
CoefficientList[Series[(1 + 3 x - 2 x^2 + 7 x^3) / ((1 - x) (1 + x) (1 - x + x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 27 2015 *) realDigitsRecip[7] (* The realDigitsRecip program is at A021200 *) (* Harvey P. Dale, Sep 18 2024 *)
1/7. \\ Charles R Greathouse IV, Sep 24 2015
digits(10^99\7) \\ M. F. Hasler, Oct 25 2017
I:=[0, 5, 8, 8, 2, 3, 5, 2, 9]; [n le 9 select I[n] else Self(n-1)-Self(n-8)+Self(n-9): n in [1..100]]; // Vincenzo Librandi, Mar 25 2013
CoefficientList[Series[-x (7 x^7 - 3 x^6 + 2 x^5 + x^4 - 6 x^3 + 3 x + 5)/((x - 1) (x^8+1)), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 25 2013 *)
a(n)=[0,5,8,8,2,3,5,2,9,4,1,1,7,6,4,7][n%16+1]; /* Joerg Arndt, Mar 25 2013 */
Table begins: 2; 11; 101, 7, 11, 13; 73, 137; 11, 9091; 101, 9901; 11, 909091; 17, 5882353; ...
filter:= n -> traperror(NumberTheory:-ModularLog(-1,10,n)) <> "no solutions exist": filter(2):= true: select(filter, [$1..500]); # Robert Israel, Feb 11 2023
Ax := proc(n) local st: st := ithprime(n): if (modp(numtheory[order](10,st),2) <> 0) then RETURN(st) fi: end: seq(Ax(n), n=1..200);
Union[{2, 5}, Select[Prime[Range[200]], OddQ[Length[RealDigits[1/#][[1, 1]]]] &]]
select( {is_A186635(n)=isprime(n) && (n<7 || znorder(Mod(10, n))%2)}, [0..1234]) \\ M. F. Hasler, Nov 19 2024
from sympy import isprime, n_order is_A186635 = lambda n: isprime(n) and (n<7 or n_order(10, n)%2) [n for n in range(1234) if is_A186635(n)] # M. F. Hasler, Nov 19 2024
fct1 := proc(an) local i,st: st := 0: for i from 1 to nops(an)/2 do st := op(i,an)*10^(nops(an)/2-i) + st od: RETURN(st): end: fct2 := proc(an) local i,st: st := 0: for i from nops(an)/2+1 to nops(an) do st := op(i,an)*10^(nops(an)/2-i+nops(an)/2) + st od: RETURN(st): end: A187040 := proc(n) local st: st := op(4,numtheory[pdexpand](1/n)); if (modp(nops(st),2) = 0) then if (10^(nops(st)/2)-1 - (fct1(st)+fct2(st)) = 0) then RETURN(n) fi: fi: end: seq(A187040(n), n=2..200);
okQ[n_] := Module[{ps = First /@ FactorInteger[n], d, len}, If[n < 2 || Complement[ps, {2, 5}] == {}, False, d = RealDigits[1/n, 10][[1, -1]]; len = Length[d]; EvenQ[len] && Union[Total[Partition[d, len/2]]] == {9}]]; Select[Range[200], okQ] (* T. D. Noe, Mar 02 2011 *)
[ p: p in PrimesUpTo(3000) | p mod 760 in {19, 21, 29, 51, 59, 69, 91, 109, 141, 179, 181, 189, 211, 219, 221, 259, 261, 269, 299, 331, 341, 371, 379, 411, 421, 451, 459, 469, 509, 531, 611, 621, 629, 659, 661, 699, 749}]; // Vincenzo Librandi, Jul 30 2012
QuadPrimes2[10, 0, 19, 10000] (* see A106856 *)
fct1 := proc(an) local i,st: st := 0: for i from 1 to nops(an)/2 do st := op(i,an)*10^(nops(an)/2-i) + st od: RETURN(st): end: fct2 := proc(an) local i,st: st := 0: for i from nops(an)/2+1 to nops(an) do st := op(i,an)*10^(nops(an)/2-i+nops(an)/2) + st od: RETURN(st): end: A187041 := proc(n) local st: st := op(4,numtheory[pdexpand](1/n)); if (modp(nops(st),2) <> 0 or nops(st) = 1 or n = 1) then RETURN(n) elif (modp(nops(st),2) = 0) then if not(10^(nops(st)/2)-1 - (fct1(st)+fct2(st)) = 0) then RETURN(n) fi: fi: end: seq(A187041(n), n=1..250);
okQ[n_] := Module[{ps = First /@ FactorInteger[n], d, len}, If[n < 2 || Complement[ps, {2, 5}] == {}, False, d = RealDigits[1/n, 10][[1, -1]]; len = Length[d]; EvenQ[len] && Union[Total[Partition[d, len/2]]] == {9}]]; Select[Range[300], ! okQ[#] &] (* T. D. Noe, Mar 02 2011 *)
Comments