cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028417 Sum over all n! permutations of n elements of minimum lengths of cycles.

Original entry on oeis.org

1, 3, 10, 45, 236, 1505, 10914, 90601, 837304, 8610129, 96625970, 1184891081, 15665288484, 223149696601, 3394965018886, 55123430466945, 948479737691504, 17289345305870561, 332019600921360594, 6713316975465246889, 142321908843254560540, 3161718732648662557161
Offset: 1

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Crossrefs

Cf. A005225.
Column k=1 of A322383.

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, m, add((j-1)!*
          b(n-j, min(m,j))*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, infinity):
    seq(a(n), n=1..25);  # Alois P. Heinz, May 14 2016
  • Mathematica
    Drop[Apply[Plus,Table[nn=25;Range[0,nn]!CoefficientList[Series[Exp[Sum[ x^i/i,{i,n,nn}]]-1,{x,0,nn}],x],{n,1,nn}]],1] (* Geoffrey Critzer, Jan 10 2013 *)
    b[n_, m_] := b[n, m] = If[n == 0, m, Sum[(j-1)! b[n-j, Min[m, j]]* Binomial[n-1, j-1], {j, n}]];
    a[n_] := b[n, Infinity];
    Array[a, 25] (* Jean-François Alcover, Apr 21 2020, after Alois P. Heinz *)

Formula

E.g.f.: Sum[k>0, -1+ exp(Sum(j>=k, x^j/j))]. - Vladeta Jovovic, Jul 26 2004
a(n) = Sum_{k=1..n} k * A145877(n,k). - Alois P. Heinz, Jul 28 2014

Extensions

More terms from Vladeta Jovovic, Sep 19 2002