cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028557 a(n) = n*(n+5).

Original entry on oeis.org

0, 6, 14, 24, 36, 50, 66, 84, 104, 126, 150, 176, 204, 234, 266, 300, 336, 374, 414, 456, 500, 546, 594, 644, 696, 750, 806, 864, 924, 986, 1050, 1116, 1184, 1254, 1326, 1400, 1476, 1554, 1634, 1716, 1800, 1886, 1974, 2064, 2156, 2250, 2346, 2444, 2544, 2646, 2750
Offset: 0

Views

Author

Keywords

Comments

a(m) where m is a positive integer are the only positive integer values of t for which the Binet-de Moivre formula of the recurrence b(n) = 5*b(n-1) + t*b(n-2) with b(0)=0 and b(1)=1 has a root which is a square. In particular sqrt(5^2+4*t) is an integer since 5^2 + 4*t = 5^2 + 4*a(m) = (2*m+5)^2. Thus the characteristic roots are r1=m+5 and r2=-m. - Felix P. Muga II, Mar 27 2014

Crossrefs

Programs

Formula

a(n) = 2*A055998(n).
a(n) = 2*n + a(n-1) + 4. - Vincenzo Librandi, Aug 05 2010
Sum_{n>=1} 1/a(n) = 137/300 = 0.4566666... - R. J. Mathar, Mar 22 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/5 - 47/300. - Amiram Eldar, Jan 15 2021
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = -24*cos(sqrt(29)*Pi/2)/(7*Pi).
Product_{n>=1} (1 + 1/a(n)) = 8*cos(sqrt(21)*Pi/2)/Pi. (End)
From Elmo R. Oliveira, Oct 28 2024: (Start)
G.f.: 2*x*(3 - 2*x)/(1 - x)^3.
E.g.f.: exp(x)*x*(6 + x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)