A028840 Numbers k such that sum of digits of k is a Fibonacci number.
0, 1, 2, 3, 5, 8, 10, 11, 12, 14, 17, 20, 21, 23, 26, 30, 32, 35, 41, 44, 49, 50, 53, 58, 62, 67, 71, 76, 80, 85, 94, 100, 101, 102, 104, 107, 110, 111, 113, 116, 120, 122, 125, 131, 134, 139, 140, 143, 148, 152, 157, 161, 166, 170, 175, 184, 193, 200, 201, 203, 206
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
isA000045 := proc(n) local i,f; for i from 0 do f := combinat[fibonacci](i) ; if f = n then return true; elif f > n then return false; end if; end do: end proc: isA028840 := proc(n) isA000045(A007953(n)) ; end proc: for n from 0 to 1000 do if isA028840(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Apr 17 2013 # second Maple program: q:= proc(n) option remember; (t-> issqr(t+4) or issqr(t-4))(5*n^2) end: a:= proc(n) option remember; local k; for k from `if`(n=1, 0, 1+a(n-1)) while not q( add(i, i=convert(k, base, 10))) do od; k end: seq(a(n), n=1..66); # Alois P. Heinz, Jan 28 2020
-
Mathematica
f = Union[Fibonacci[Range[0, 8]]]; t = {}; n = 0; While[c = Total[IntegerDigits[n]]; c < f[[-1]], If[MemberQ[f, c], AppendTo[t, n]]; n++]; t (* T. D. Noe, Jan 03 2013 *)
Extensions
More terms from Erich Friedman
0 inserted by Dario Piazzalunga, Jan 03 2013
Comments