cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028840 Numbers k such that sum of digits of k is a Fibonacci number.

Original entry on oeis.org

0, 1, 2, 3, 5, 8, 10, 11, 12, 14, 17, 20, 21, 23, 26, 30, 32, 35, 41, 44, 49, 50, 53, 58, 62, 67, 71, 76, 80, 85, 94, 100, 101, 102, 104, 107, 110, 111, 113, 116, 120, 122, 125, 131, 134, 139, 140, 143, 148, 152, 157, 161, 166, 170, 175, 184, 193, 200, 201, 203, 206
Offset: 1

Views

Author

Keywords

Comments

The subsequence of primes begins: 2, 3, 5, 11, 17, 23, 41, 53, 67, 71, 101, 107, 113, 131, 139, 157, 193, 229, 233, 251 ... - Dario Piazzalunga, Jan 03 2013
The subsequence of Fibonacci numbers begins: 0, 1, 2, 3, 5, 8, 21, 233, ... (no more up to 100000). - Dario Piazzalunga, Jan 03 2013

Crossrefs

Programs

  • Maple
    isA000045 := proc(n)
        local i,f;
        for i from 0 do
            f := combinat[fibonacci](i) ;
            if f = n then
                return true;
            elif f > n then
                return false;
            end if;
        end do:
    end proc:
    isA028840 := proc(n)
        isA000045(A007953(n)) ;
    end proc:
    for n from 0 to 1000 do
        if isA028840(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Apr 17 2013
    # second Maple program:
    q:= proc(n) option remember; (t->
          issqr(t+4) or issqr(t-4))(5*n^2)
        end:
    a:= proc(n) option remember; local k; for k from
         `if`(n=1, 0, 1+a(n-1)) while not q(
          add(i, i=convert(k, base, 10))) do od; k
        end:
    seq(a(n), n=1..66);  # Alois P. Heinz, Jan 28 2020
  • Mathematica
    f = Union[Fibonacci[Range[0, 8]]]; t = {}; n = 0; While[c = Total[IntegerDigits[n]]; c < f[[-1]], If[MemberQ[f, c], AppendTo[t, n]]; n++]; t (* T. D. Noe, Jan 03 2013 *)

Extensions

More terms from Erich Friedman
0 inserted by Dario Piazzalunga, Jan 03 2013