cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Dario Piazzalunga

Dario Piazzalunga's wiki page.

Dario Piazzalunga has authored 8 sequences.

A187768 Decimal expansion of square root of 103.

Original entry on oeis.org

1, 0, 1, 4, 8, 8, 9, 1, 5, 6, 5, 0, 9, 2, 2, 1, 9, 4, 6, 8, 6, 4, 8, 5, 2, 0, 1, 1, 8, 9, 3, 5, 8, 7, 4, 3, 8, 3, 5, 8, 1, 9, 2, 2, 5, 0, 1, 8, 8, 8, 4, 0, 6, 6, 5, 2, 2, 5, 3, 6, 5, 0, 9, 2, 0, 6, 1, 1, 4, 0, 3, 8, 2, 2, 7, 0, 0, 5, 1, 7, 5, 0, 5, 6, 4, 1, 3
Offset: 2

Author

Dario Piazzalunga, Jan 04 2013

Keywords

Comments

Continued fraction expansion of sqrt(103) is A010171.

Examples

			10.1488915650922194686485201189358743835819225018884066522...
		

Crossrefs

Programs

A192106 Decimal expansion of square root of 102.

Original entry on oeis.org

1, 0, 0, 9, 9, 5, 0, 4, 9, 3, 8, 3, 6, 2, 0, 7, 7, 9, 5, 3, 3, 6, 3, 3, 8, 5, 9, 1, 7, 0, 6, 9, 6, 0, 0, 7, 1, 0, 6, 0, 3, 8, 9, 8, 9, 6, 4, 4, 7, 9, 6, 1, 2, 9, 4, 1, 8, 5, 3, 0, 2, 4, 7, 6, 2, 3, 2
Offset: 2

Author

Dario Piazzalunga, Dec 30 2012

Keywords

Comments

Continued fraction expansion of sqrt(102) is A040091.

Examples

			10.0995049383620779533633859170696007106038989644796129418...
		

Crossrefs

Cf. A040091.

Programs

A187744 Numbers whose digital sum is a triangular number.

Original entry on oeis.org

0, 1, 3, 6, 10, 12, 15, 19, 21, 24, 28, 30, 33, 37, 42, 46, 51, 55, 60, 64, 69, 73, 78, 82, 87, 91, 96, 100, 102, 105, 109, 111, 114, 118, 120, 123, 127, 132, 136, 141, 145, 150, 154, 159, 163, 168, 172, 177, 181, 186, 190, 195, 201, 204, 208, 210, 213, 217
Offset: 1

Author

Dario Piazzalunga, Jan 03 2013

Keywords

Comments

Every term with some permutations can become another term of this sequence.
The subsequence of primes begins: 3, 19, 37, 73, 91, 127...
The subsequence of triangular numbers begins: 1, 3, 6, 10, 15, 21, 28, 55...

Crossrefs

Programs

  • Haskell
    a187744 n = a187744_list !! (n-1)
    a187744_list = filter ((== 1) . a010054 . a007953) [0..]
    -- Reinhard Zumkeller, Jan 03 2013
  • Mathematica
    TriangularQ[n_] := IntegerQ[Sqrt[1 + 8 n]]; Select[Range[0, 300], TriangularQ[Total[IntegerDigits[#]]] &] (* T. D. Noe, Jan 03 2013 *)

Formula

If decimal expansion of n is x1 x2 ... xk then x1 + x2 + ... xk = T.
A010054(A007953(a(n))) = 1. - Reinhard Zumkeller, Jan 03 2013

A193772 Nonnegative integers whose digital difference is 0.

Original entry on oeis.org

0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 110, 202, 211, 220, 303, 312, 321, 330, 404, 413, 422, 431, 440, 505, 514, 523, 532, 541, 550, 606, 615, 624, 633, 642, 651, 660, 707, 716, 725, 734, 743, 752, 761, 770, 808, 817, 826, 835, 844, 853, 862, 871, 880
Offset: 1

Author

Dario Piazzalunga, Jan 02 2013

Keywords

Comments

The subsequence of multiples of 11 begins: 0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 220, 330, 440...
The subsequence of primes begins: 11, 101, 211, 431, 523, 541, 743, 761, 853, ... (see A156307).

Crossrefs

Programs

  • Maple
    V:= proc(n,s) # n-digits numbers with sum of digits s
         option remember; local i,k;
         `union`(seq(seq(map(t -> i*10^(n-1) + t, procname(k,s-i)),k=1..n-1),i=1..min(s,9)))
    end proc:
    for s from 0 to 9 do V(1,s) := {s} od:
    f:= proc(n) local s,k;
       `union`(seq(seq(map(t -> s*10^(n-1) + t, V(k,s)), k=1..n-1),s=1..9))
    end proc:
    sort(convert(`union`(seq(f(d),d=1..4)),list)); # Robert Israel, Nov 14 2024
  • Mathematica
    fQ[n_] := Module[{d = IntegerDigits[n]}, d[[1]] == Total[Rest[d]]]; Select[Range[0, 1000], fQ] (* T. D. Noe, Jan 02 2013 *)

Formula

If decimal expansion of n is x1 x2 ... xk then x1 - x2 - ... - xk = 0.

Extensions

Definition edited by Michel Marcus, Oct 26 2014

A185107 a(n) is the first digit of prime(n) minus the sum of the other digits.

Original entry on oeis.org

2, 3, 5, 7, 0, -2, -6, -8, -1, -7, 2, -4, 3, 1, -3, 2, -4, 5, -1, 6, 4, -2, 5, -1, 2, 0, -2, -6, -8, -3, -8, -3, -9, -11, -12, -5, -11, -8, -12, -9, -15, -8, -9, -11, -15, -17, 0, -3, -7, -9, -4, -10, -3, -4, -10, -7, -13
Offset: 1

Author

Dario Piazzalunga, Dec 27 2012

Keywords

Comments

Absolute terms are the same as A042939.

Crossrefs

Programs

  • Mathematica
    Table[With[{id=IntegerDigits[Prime[n]]},id[[1]]-Total[Rest[id]]],{n,60}] (* Harvey P. Dale, Oct 04 2024 *)
  • PARI
    a(n) = {digs = digits(prime(n)); digs[1] - sum(i=2, #digs, digs[i]);} \\ Michel Marcus, Aug 30 2013

Extensions

a(38) corrected by Michel Marcus, Jun 14 2022

A184328 Primes whose digital product is a positive square.

Original entry on oeis.org

11, 19, 41, 149, 191, 199, 229, 263, 281, 313, 331, 419, 433, 449, 491, 499, 661, 683, 797, 821, 829, 863, 881, 911, 919, 941, 977, 991, 1229, 1289, 1433, 1499, 1559, 1669, 1747, 1889, 1933, 1949, 1999, 2129, 2383, 2693, 2819, 2833, 2963, 3319, 3391, 3413
Offset: 1

Author

Dario Piazzalunga, Dec 24 2012

Keywords

Programs

  • Magma
    [p: p in PrimesUpTo(4000) | not IsZero(t) and IsSquare(t) where t is &*Intseq(p)]; // Bruno Berselli, Dec 25 2012
  • Mathematica
    fQ[n_] := Module[{d = Times @@ IntegerDigits[n]}, d > 0 && IntegerQ[Sqrt[d]]];Select[Prime[Range[1000]], fQ] (* T. D. Noe, Dec 24 2012 *)

Extensions

Corrected and extended by T. D. Noe, Dec 24 2012

A220588 a(n) = 2^n - n^2 - n.

Original entry on oeis.org

1, 0, -2, -4, -4, 2, 22, 72, 184, 422, 914, 1916, 3940, 8010, 16174, 32528, 65264, 130766, 261802, 523908, 1048156, 2096690, 4193798, 8388056, 16776616, 33553782, 67108162, 134216972, 268434644, 536870042, 1073740894, 2147482656, 4294966240, 8589933470, 17179867994
Offset: 0

Author

Dario Piazzalunga, Dec 16 2012

Keywords

Examples

			a(3) = -4 because 2^3 - 3^2 - 3 = 8 - 9 - 3 = -4.
a(4) = -4 because 2^4 - 4^2 - 4 = 16 - 16 - 4 = -4.
a(5) = 2 because 2^5 - 5^2 - 5 = 32 - 25 - 5 = 2.
a(6) = 22 because 2^6 - 6^2 - 6 = 64 - 36 - 6 = 22.
		

Crossrefs

Programs

  • Mathematica
    Table[2^n - n^2 - n, {n, 0, 32}] (* Alonso del Arte, Dec 16 2012 *)
  • Maxima
    A220588(n):=2^n-n^2-n$ makelist(A220588(n),n,0,20); /* Martin Ettl, Dec 18 2012 */
    
  • PARI
    Vec((1 - 5*x + 7*x^2 - x^3) / ((1 - x)^3*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Aug 16 2017

Formula

a(n) = 2*a(n - 1) + ((n - 3)^2 + 3(n - 3)) = 2*a(n - 1) + A028552(n - 3) for n > 4.
a(n) = (2*a(n-1) + 7*a(n-2))*2 = A015519/2 for n > 4.
From Colin Barker, Aug 16 2017: (Start)
G.f.: (1 - 5*x + 7*x^2 - x^3) / ((1 - x)^3*(1 - 2*x)).
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4) for n>3.
(End)

Extensions

a(3) corrected by Charles A. Dagino, Aug 16 2017

A220425 a(n) = n^2 + 2*n + 2^n.

Original entry on oeis.org

1, 5, 12, 23, 40, 67, 112, 191, 336, 611, 1144, 2191, 4264, 8387, 16608, 33023, 65824, 131395, 262504, 524687, 1049016, 2097635, 4194832, 8389183, 16777840, 33555107, 67109592, 134218511, 268436296, 536871811, 1073742784, 2147484671, 4294968384, 8589935747
Offset: 0

Author

Dario Piazzalunga, Dec 14 2012

Keywords

Programs

  • Mathematica
    Table[n^2 + 2*n + 2^n, {n, 0, 50}] (* T. D. Noe, Dec 14 2012 *)
  • Maxima
    makelist(n^2+2*n+2^n, n, 0, 20); /* Martin Ettl, Dec 15 2012 */
    
  • PARI
    a(n)=n^2+2*n+2^n \\ Charles R Greathouse IV, Oct 07 2015
    
  • PARI
    first(n) = Vec((1 - 4*x^2 + x^3)/((1 - x)^3 * (1 - 2*x)) + O(x^n)) \\ Iain Fox, Aug 08 2018

Formula

G.f.: (x^3-4*x^2+1) / ((x-1)^3*(2*x-1)). - Colin Barker, May 09 2013
E.g.f.: exp(x) * (exp(x) + x*(3 + x)). - Iain Fox, Aug 08 2018