cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A050626 Product of digits of n is a nonzero square.

Original entry on oeis.org

1, 4, 9, 11, 14, 19, 22, 28, 33, 41, 44, 49, 55, 66, 77, 82, 88, 91, 94, 99, 111, 114, 119, 122, 128, 133, 141, 144, 149, 155, 166, 177, 182, 188, 191, 194, 199, 212, 218, 221, 224, 229, 236, 242, 248, 263, 281, 284, 289, 292, 298, 313, 326, 331, 334, 339, 343
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1999

Keywords

Crossrefs

Programs

  • Magma
    [ n: n in [1..350] | s gt 0 and IsSquare(s) where s is &*Intseq(n,10) ];  // Bruno Berselli, May 26 2011
    
  • Mathematica
    Select[Range[500],DigitCount[#,10,0]==0&&IntegerQ[Sqrt[Times@@ IntegerDigits[ #]]]&] (* Harvey P. Dale, Jun 09 2020 *)
  • PARI
    is(n)=my(v=digits(n),pr=prod(i=1,#v,v[i]));pr&&issquare(pr) \\ Charles R Greathouse IV, May 19 2013

A028837 Iterated sum of digits of n is a square.

Original entry on oeis.org

1, 4, 9, 10, 13, 18, 19, 22, 27, 28, 31, 36, 37, 40, 45, 46, 49, 54, 55, 58, 63, 64, 67, 72, 73, 76, 81, 82, 85, 90, 91, 94, 99, 100, 103, 108, 109, 112, 117, 118, 121, 126, 127, 130, 135, 136, 139, 144, 145, 148, 153, 154, 157, 162, 163, 166, 171, 172, 175, 180
Offset: 1

Views

Author

Keywords

Examples

			E.g. 58 -> 5+8 = 13 -> 1+3 = 4 is a square.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,1,-1},{1,4,9,10},60] (* Harvey P. Dale, Jan 26 2015 *)

Formula

a(n) = a(n-3)+9. If n is a multiple of 3 then a(n) = 3n, otherwise a(n) = 3n-2. Numbers of form {0, 1, 4} modulo 9 - Henry Bottomley, Jun 30 2000
a(1)=1, a(2)=4, a(3)=9, a(4)=10, a(n)=a(n-1)+a(n-3)-a(n-4). - Harvey P. Dale, Jan 26 2015
G.f.: x*(1+3*x+5*x^2) / ( (1+x+x^2)*(x-1)^2 ). - R. J. Mathar, Sep 22 2016
E.g.f.: (exp(x)*(9*x - 4) + 4*exp(-x/2)*cos(sqrt(3)*x/2))/3. - Stefano Spezia, Mar 07 2024

Extensions

More terms from Patrick De Geest, Jun 15 1999

A050627 Product of digits of n is a nonzero single-digit square.

Original entry on oeis.org

1, 4, 9, 11, 14, 19, 22, 33, 41, 91, 111, 114, 119, 122, 133, 141, 191, 212, 221, 313, 331, 411, 911, 1111, 1114, 1119, 1122, 1133, 1141, 1191, 1212, 1221, 1313, 1331, 1411, 1911, 2112, 2121, 2211, 3113, 3131, 3311, 4111, 9111, 11111, 11114, 11119, 11122, 11133
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1999

Keywords

Comments

I.e., the product of digits is 1, 4, or 9. - Franklin T. Adams-Watters, Sep 27 2016

Crossrefs

Cf. A007954, A028845, A028839, A002275 (a subsequence).

Programs

  • Maple
    f:= proc(d) local R,i;
      R:= [1$d],seq([1$i,4,1$(d-1-i)],i=0..d-1),seq([1$i,9,1$(d-1-i)],i=0..d-1);
      if d >= 2 then R:= R, op(combinat:-permute([1$(d-2),2,2])), op(combinat:-permute([1$(d-2),3,3])) fi;
      op(sort(map(proc(L) local i; add(L[i]*10^(i-1),i=1..d) end proc, [R])))
    end proc:
    map(f, [$1..6]); # Robert Israel, Apr 09 2025
  • Mathematica
    Select[Range[12000],MemberQ[{1,4,9},Times@@IntegerDigits[#]]&] (* Harvey P. Dale, Jan 22 2016 *)
Showing 1-3 of 3 results.