A028874 Primes of form k^2 - 3.
13, 61, 97, 193, 397, 673, 1021, 1153, 1597, 1933, 2113, 3361, 4093, 4621, 6397, 7393, 7741, 8461, 9601, 12097, 12541, 13921, 15373, 16381, 18493, 19597, 20161, 21313, 26893, 29581, 36097, 37633, 40801, 42433, 43261, 47521, 48397
Offset: 1
Keywords
Examples
61 is prime and equal to 8^2 - 3, so it is in the sequence. 67 is prime but it's 8^2 + 3 = 9^2 - 14, so it is not in the sequence. 9^2 - 3 = 78 but it's composite, so it's not in the sequence either.
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..10000
- Patrick De Geest, Palindromic Quasipronics of the form n(n+x).
- R. J. Mathar, Solutions to the exponential Diophantine 1 + p_1^x + p_2^y + p_3^z = w^2 for distinct primes p_1, p_2, p_3, 2022.
- Eric Weisstein's World of Mathematics, Near-Square Prime.
Crossrefs
Programs
-
Magma
[a: n in [2..300] | IsPrime(a) where a is n^2-3 ]; // Vincenzo Librandi, Nov 08 2014
-
Mathematica
Select[Range[2, 250]^2 - 3, PrimeQ] (* Harvey P. Dale, Aug 07 2013 *) Select[Table[n^2 - 3, {n, 2, 300}], PrimeQ] (* Vincenzo Librandi, Nov 08 2014 *)
-
PARI
select(isprime, vector(100,n,n^2-3)) \\ Charles R Greathouse IV, Nov 19 2014
Formula
a(n) = A028873(n)^2 - 3. - Amiram Eldar, Mar 01 2025
Comments