cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028884 a(n) = (n + 3)^2 - 8.

Original entry on oeis.org

1, 8, 17, 28, 41, 56, 73, 92, 113, 136, 161, 188, 217, 248, 281, 316, 353, 392, 433, 476, 521, 568, 617, 668, 721, 776, 833, 892, 953, 1016, 1081, 1148, 1217, 1288, 1361, 1436, 1513, 1592, 1673, 1756, 1841, 1928, 2017, 2108, 2201, 2296, 2393
Offset: 0

Views

Author

Keywords

Comments

From Klaus Purath, Jan 04 2023: (Start)
The product of two consecutive terms belongs to the sequence: a(n)*a(n+1) = a(a(n)+n) = (a(n)+n)*(a(n+1)-n-1) + 1.
a(n) is never divisible by primes given in A003629.
Each odd prime factor p divides exactly 2 out of any p consecutive terms. If a(i) and a(k) form such a pair that are divisible by p, then i + k == -6 (mod p).
The prime factors are listed in A038873 and the primes in A028886.
For n > 0, this is a proper subsequence of A079896.
Conjecture: a(n) = A079896(A265284(n-1)). -
(End)

Examples

			From _Stefano Spezia_, Nov 08 2022: (Start)
Illustrations for n = 0..4:
          *       * * *     * * * * *
      a(0) = 1    *   *     *       *
                  * * *     *   *   *
                a(1) = 8    *       *
                            * * * * *
                            a(2) = 17
.
   * * * * * * *    * * * * * * * * *
   *           *    *               *
   *   *   *   *    *   *   *   *   *
   *           *    *               *
   *   *   *   *    *   *   *   *   *
   *           *    *               *
   * * * * * * *    *   *   *   *   *
     a(3) = 28      *               *
                    * * * * * * * * *
                        a(4) = 41
(End)
		

Crossrefs

Programs

Formula

a(n) = a(n-1) + 2*n + 5 (with a(0) = 1). - Vincenzo Librandi, Aug 05 2010
a(n) = A028560(n) + 1; A014616(n) = floor(a(n+1)/4). - Reinhard Zumkeller, Apr 07 2013
G.f.: (-1 - 5*x + 4*x^2)/(x - 1)^3. - R. J. Mathar, Mar 24 2013
Sum_{n >= 0} 1/a(n) = 51/112 - Pi*cot(2*Pi*sqrt(2))/(4*sqrt(2)) = 1.3839174974448... . - Vaclav Kotesovec, Apr 10 2016
E.g.f.: (1 + 7*x + x^2)*exp(x). - G. C. Greubel, Aug 19 2017
Sum_{n >= 0} (-1)^n/a(n) = (-19 + 14*sqrt(2)*Pi*cosec(2*sqrt(2)*Pi))/112. - Amiram Eldar, Nov 04 2020
From Klaus Purath, Jan 04 2023: (Start)
a(n) = 2*a(n-1) - a(n-2) + 2, n >= 2.
a(n) = A082111(n) + n.
a(n) = A190576(n+1) - n. (End)
From Amiram Eldar, Feb 05 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = 7*Pi/(45*sqrt(2)*sin(2*sqrt(2)*Pi)).
Product_{n>=0} (1 + 1/a(n)) = (4*sqrt(14)/9)*sin(sqrt(7)*Pi)/sin(2*sqrt(2)*Pi). (End)

Extensions

Definition corrected by Omar E. Pol, Jul 27 2009