A028910 Arrange digits of 2^n in descending order.
1, 2, 4, 8, 61, 32, 64, 821, 652, 521, 4210, 8420, 9640, 9821, 86431, 87632, 66553, 732110, 644221, 885422, 8765410, 9752210, 9444310, 8888630, 77766211, 55443332, 88766410, 877432211, 866554432, 987653210, 8774432110, 8876444321
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3321
Crossrefs
The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).
Programs
-
Magma
[Seqint(Sort(Intseq(2^n))):n in [0..31]]; // Marius A. Burtea, Oct 06 2019
-
Maple
a:= n-> parse(cat(sort(convert(2^n, base, 10), `>`)[])): seq(a(n), n=0..50); # Alois P. Heinz, Jan 21 2020
-
Mathematica
FromDigits[Reverse[Sort[IntegerDigits[#]]]]&/@(2^Range[0,40]) (* Harvey P. Dale, Mar 06 2020 *)
-
Python
def A028910(n): return int(''.join(sorted(str(2**n),reverse=True))) # Chai Wah Wu, Feb 19 2021
Extensions
More terms from Patrick De Geest, Apr 15 1998