cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028986 Palindromes whose sum of divisors is palindromic.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 333, 17571, 1757571, 1787871, 2249422, 4369634, 5136315, 412727214, 439838934, 518686815, 541626145, 17575757571, 52554845525, 4166253526614, 5136813186315, 5136868686315, 5806270726085, 7359770779537, 172757272757271, 513636363636315
Offset: 1

Views

Author

Keywords

Comments

a(39) >= 10^18. - Hiroaki Yamanouchi, Sep 27 2014
Intersection of A002113 and of A028980. - Michel Marcus, Apr 06 2015

Crossrefs

Cf. A002113 (palindromes), A028980 (sigma(n) is a palindrome).

Programs

  • Mathematica
    palQ[n_]:=Reverse[x=IntegerDigits[n]]==x; t={}; Do[If[palQ[n] && palQ[DivisorSigma[1,n]],AppendTo[t,n]],{n,5.2*10^6}]; t (* Jayanta Basu, May 17 2013 *)
    Select[Range[52*10^6], AllTrue[{#, DivisorSigma[1, #]}, PalindromeQ] &] (* This naive program is not suitable for generating more than 13 terms of the sequence. *) (* Harvey P. Dale, Sep 21 2023 *)
  • PARI
    a(n)=my(d,i,r);r=vector(#digits(n-10^(#digits(n\11)))+#digits(n\11));n=n-10^(#digits(n\11));d=digits(n);for(i=1,#d,r[i]=d[i];r[#r+1-i]=d[i]);sum(i=1,#r,10^(#r-i)*r[i]) \\ David A. Corneth in A002113, Jun 06 2014
    pal(n)=d=digits(n);Vecrev(d)==d
    for(n=2,10^5,if(pal(sigma(a(n))),print1(a(n),", "))) \\ Derek Orr, Apr 05 2015

Extensions

a(18)-a(24) from Donovan Johnson, Apr 19 2010
a(25)-a(26) from Donovan Johnson, Jun 16 2011