A028986 Palindromes whose sum of divisors is palindromic.
1, 2, 3, 4, 5, 7, 333, 17571, 1757571, 1787871, 2249422, 4369634, 5136315, 412727214, 439838934, 518686815, 541626145, 17575757571, 52554845525, 4166253526614, 5136813186315, 5136868686315, 5806270726085, 7359770779537, 172757272757271, 513636363636315
Offset: 1
Links
- Hiroaki Yamanouchi, Table of n, a(n) for n = 1..38
- P. De Geest, World!Of Numbers
Programs
-
Mathematica
palQ[n_]:=Reverse[x=IntegerDigits[n]]==x; t={}; Do[If[palQ[n] && palQ[DivisorSigma[1,n]],AppendTo[t,n]],{n,5.2*10^6}]; t (* Jayanta Basu, May 17 2013 *) Select[Range[52*10^6], AllTrue[{#, DivisorSigma[1, #]}, PalindromeQ] &] (* This naive program is not suitable for generating more than 13 terms of the sequence. *) (* Harvey P. Dale, Sep 21 2023 *)
-
PARI
a(n)=my(d,i,r);r=vector(#digits(n-10^(#digits(n\11)))+#digits(n\11));n=n-10^(#digits(n\11));d=digits(n);for(i=1,#d,r[i]=d[i];r[#r+1-i]=d[i]);sum(i=1,#r,10^(#r-i)*r[i]) \\ David A. Corneth in A002113, Jun 06 2014 pal(n)=d=digits(n);Vecrev(d)==d for(n=2,10^5,if(pal(sigma(a(n))),print1(a(n),", "))) \\ Derek Orr, Apr 05 2015
Extensions
a(18)-a(24) from Donovan Johnson, Apr 19 2010
a(25)-a(26) from Donovan Johnson, Jun 16 2011
Comments