A028994 Even 10-gonal (or decagonal) numbers.
0, 10, 52, 126, 232, 370, 540, 742, 976, 1242, 1540, 1870, 2232, 2626, 3052, 3510, 4000, 4522, 5076, 5662, 6280, 6930, 7612, 8326, 9072, 9850, 10660, 11502, 12376, 13282, 14220, 15190, 16192, 17226, 18292, 19390, 20520, 21682, 22876, 24102, 25360, 26650, 27972
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Decagonal Number.
- Eric Weisstein's World of Mathematics, Windmill Graph. - _Emeric Deutsch_, Sep 21 2010
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[2*n*(8*n - 3): n in [0..60]]; // Vincenzo Librandi, Oct 18 2013
-
Mathematica
CoefficientList[Series[-2 x (11 x + 5)/(x - 1)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 18 2013 *) LinearRecurrence[{3, -3, 1}, {0, 10, 52}, 40] (* Harvey P. Dale, Dec 10 2014 *) Table[16n^2 - 6n, {n, 0, 49}] (* Alonso del Arte, Jan 24 2017 *)
-
PARI
a(n)=2*n*(8*n-3) \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = 2*n*(8*n - 3). - Omar E. Pol, Aug 19 2011
G.f.: -2*x*(11*x+5)/(x-1)^3. - Colin Barker, Nov 18 2012
Sum_{n>=1} 1/a(n) = (8*log(2) - (sqrt(2)-1)*Pi - 2*sqrt(2)*log(1+sqrt(2)))/12. - Amiram Eldar, Feb 27 2022
From Elmo R. Oliveira, Oct 27 2024: (Start)
E.g.f.: 2*x*(5 + 8*x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Comments