cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A001107 10-gonal (or decagonal) numbers: a(n) = n*(4*n-3).

Original entry on oeis.org

0, 1, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451, 540, 637, 742, 855, 976, 1105, 1242, 1387, 1540, 1701, 1870, 2047, 2232, 2425, 2626, 2835, 3052, 3277, 3510, 3751, 4000, 4257, 4522, 4795, 5076, 5365, 5662, 5967, 6280, 6601, 6930, 7267, 7612, 7965, 8326
Offset: 0

Views

Author

Keywords

Comments

Write 0, 1, 2, ... in a square spiral, with 0 at the origin and 1 immediately below it; sequence gives numbers on the negative y-axis (see Example section).
Number of divisors of 48^(n-1) for n > 0. - J. Lowell, Aug 30 2008
a(n) is the Wiener index of the graph obtained by connecting two copies of the complete graph K_n by an edge (for n = 3, approximately: |>-<|). The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices in the graph. - Emeric Deutsch, Sep 20 2010
This sequence does not contain any squares other than 0 and 1. See A188896. - T. D. Noe, Apr 13 2011
For n > 0: right edge of the triangle A033293. - Reinhard Zumkeller, Jan 18 2012
Sequence found by reading the line from 0, in the direction 0, 10, ... and the parallel line from 1, in the direction 1, 27, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Jul 18 2012
Partial sums give A007585. - Omar E. Pol, Jan 15 2013
This is also a star pentagonal number: a(n) = A000326(n) + 5*A000217(n-1). - Luciano Ancora, Mar 28 2015
Also the number of undirected paths in the n-sunlet graph. - Eric W. Weisstein, Sep 07 2017
After 0, a(n) is the sum of 2*n consecutive integers starting from n-1. - Bruno Berselli, Jan 16 2018
Number of corona of an H0 hexagon with a T(n) triangle. - Craig Knecht, Dec 13 2024

Examples

			On a square lattice, place the nonnegative integers at lattice points forming a spiral as follows: place "0" at the origin; then move one step downward (i.e., in the negative y direction) and place "1" at the lattice point reached; then turn 90 degrees in either direction and place a "2" at the next lattice point; then make another 90-degree turn in the same direction and place a "3" at the lattice point; etc. The terms of the sequence will lie along the negative y-axis, as seen in the example below:
  99  64--65--66--67--68--69--70--71--72
   |   |                               |
  98  63  36--37--38--39--40--41--42  73
   |   |   |                       |   |
  97  62  35  16--17--18--19--20  43  74
   |   |   |   |               |   |   |
  96  61  34  15   4---5---6  21  44  75
   |   |   |   |   |       |   |   |   |
  95  60  33  14   3  *0*  7  22  45  76
   |   |   |   |   |   |   |   |   |   |
  94  59  32  13   2--*1*  8  23  46  77
   |   |   |   |           |   |   |   |
  93  58  31  12--11-*10*--9  24  47  78
   |   |   |                   |   |   |
  92  57  30--29--28-*27*-26--25  48  79
   |   |                           |   |
  91  56--55--54--53-*52*-51--50--49  80
   |                                   |
  90--89--88--87--86-*85*-84--83--82--81
[Edited by _Jon E. Schoenfield_, Jan 02 2017]
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
  • Bruce C. Berndt, Ramanujan's Notebooks, Part II, Springer; see p. 23.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
  • S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A093565 ((8, 1) Pascal, column m = 2). Partial sums of A017077.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Cf. A003215.

Programs

  • Magma
    [4*n^2-3*n : n in [0..50] ]; // Wesley Ivan Hurt, Jun 05 2014
    
  • Maple
    A001107:=-(1+7*z)/(z-1)**3; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {0, 1, 10}, 60] (* Harvey P. Dale, May 08 2012 *)
    Table[PolygonalNumber[RegularPolygon[10], n], {n, 0, 46}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
    Table[4 n^2 - 3 n, {n, 0, 49}] (* Alonso del Arte, Jan 24 2017 *)
    PolygonalNumber[10, Range[0, 20]] (* Eric W. Weisstein, Sep 07 2017 *)
    LinearRecurrence[{3, -3, 1}, {1, 10, 27}, {0, 20}] (* Eric W. Weisstein, Sep 07 2017 *)
  • PARI
    a(n)=4*n^2-3*n
    
  • Python
    a=lambda n: 4*n**2-3*n # Indranil Ghosh, Jan 01 2017
    def aList(): # Intended to compute the initial segment of the sequence, not isolated terms.
         x, y = 1, 1
         yield 0
         while True:
             yield x
             x, y = x + y + 8, y + 8
    A001107 = aList()
    print([next(A001107) for i in range(49)]) # Peter Luschny, Aug 04 2019

Formula

a(n) = A033954(-n) = A074377(2*n-1).
a(n) = n + 8*A000217(n-1). - Floor van Lamoen, Oct 14 2005
G.f.: x*(1 + 7*x)/(1 - x)^3.
Partial sums of odd numbers 1 mod 8, i.e., 1, 1 + 9, 1 + 9 + 17, ... . - Jon Perry, Dec 18 2004
1^3 + 3^3*(n-1)/(n+1) + 5^3*((n-1)*(n-2))/((n+1)*(n+2)) + 7^3*((n-1)*(n-2)*(n-3))/((n+1)*(n+2)*(n+3)) + ... = n*(4*n-3) [Ramanujan]. - Neven Juric, Apr 15 2008
Starting (1, 10, 27, 52, ...), this is the binomial transform of [1, 9, 8, 0, 0, 0, ...]. - Gary W. Adamson, Apr 30 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2, a(0)=0, a(1)=1, a(2)=10. - Jaume Oliver Lafont, Dec 02 2008
a(n) = 8*n + a(n-1) - 7 for n>0, a(0)=0. - Vincenzo Librandi, Jul 10 2010
a(n) = 8 + 2*a(n-1) - a(n-2). - Ant King, Sep 04 2011
a(n) = A118729(8*n). - Philippe Deléham, Mar 26 2013
a(8*a(n) + 29*n+1) = a(8*a(n) + 29*n) + a(8*n + 1). - Vladimir Shevelev, Jan 24 2014
Sum_{n >= 1} 1/a(n) = Pi/6 + log(2) = 1.216745956158244182494339352... = A244647. - Vaclav Kotesovec, Apr 27 2016
From Ilya Gutkovskiy, Aug 28 2016: (Start)
E.g.f.: x*(1 + 4*x)*exp(x).
Sum_{n >= 1} (-1)^(n+1)/a(n) = (sqrt(2)*Pi - 2*log(2) + 2*sqrt(2)*log(1 + sqrt(2)))/6 = 0.92491492293323294695... (End)
a(n) = A000217(3*n-2) - A000217(n-2). In general, if P(k,n) be the n-th k-gonal number and T(n) be the n-th triangular number, A000217(n), then P(T(k),n) = T((k-1)*n - (k-2)) - T(k-3)*T(n-2). - Charlie Marion, Sep 01 2020
Product_{n>=2} (1 - 1/a(n)) = 4/5. - Amiram Eldar, Jan 21 2021
a(n) = A003215(n-1) + A000290(n) - 1. - Leo Tavares, Jul 23 2022

A033991 a(n) = n*(4*n-1).

Original entry on oeis.org

0, 3, 14, 33, 60, 95, 138, 189, 248, 315, 390, 473, 564, 663, 770, 885, 1008, 1139, 1278, 1425, 1580, 1743, 1914, 2093, 2280, 2475, 2678, 2889, 3108, 3335, 3570, 3813, 4064, 4323, 4590, 4865, 5148, 5439, 5738, 6045, 6360, 6683, 7014, 7353, 7700, 8055, 8418
Offset: 0

Views

Author

Keywords

Comments

Write 0,1,2,... in a clockwise spiral; sequence gives numbers on negative x axis. (See illustration in Example.)
This sequence is the number of expressions x generated for a given modulus n in finite arithmetic. For example, n=1 (modulus 1) generates 3 expressions: 0+0=0(mod 1), 0-0=0(mod 1), 0*0=0(mod 1). By subtracting n from 4n^2, we eliminate the counting of those expressions that would include division by zero, which would be, of course, undefined. - David Quentin Dauthier, Nov 04 2007
From Emeric Deutsch, Sep 21 2010: (Start)
a(n) is also the Wiener index of the windmill graph D(3,n).
The windmill graph D(m,n) is the graph obtained by taking n copies of the complete graph K_m with a vertex in common (i.e., a bouquet of n pieces of K_m graphs). The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices in the graph.
Example: a(2)=14; indeed if the triangles are OAB and OCD, then, denoting distance by d, we have d(O,A)=d(O,B)=d(A,B)=d(O,C)=d(O,D)=d(C,D)=1 and d(A,C)=d(A,D)=d(B,C)=d(B,D)=2. The Wiener index of D(m,n) is (1/2)n(m-1)[(m-1)(2n-1)+1]. For the Wiener indices of D(4,n), D(5,n), and D(6,n) see A152743, A028994, and A180577, respectively. (End)
Even hexagonal numbers divided by 2. - Omar E. Pol, Aug 18 2011
For n > 0, a(n) equals the number of length 3*n binary words having exactly two 0's with the n first bits having at most one 0. For example a(2) = 14. Words are 010111, 011011, 011101, 011110, 100111, 101011, 101101, 101110, 110011, 110101, 110110, 111001, 111010, 111100. - Franck Maminirina Ramaharo, Mar 09 2018
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [2n-1; {1, 2, 1, 4n-2}]. For n=1, this collapses to [1; {1, 2}]. - Magus K. Chu, Sep 06 2022

Examples

			Clockwise spiral (with sequence terms parenthesized) begins
   16--17--18--19
    |
   15   4---5---6
    |   |       |
  (14) (3) (0)  7
    |   |   |   |
   13   2---1   8
    |           |
   12--11--10---9
		

References

  • S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = A007742(-n) = A074378(2n-1) = A014848(2n).
G.f.: x*(3+5*x)/(1-x)^3. - Michael Somos, Mar 03 2003
a(n) = A014635(n)/2. - Zerinvary Lajos, Jan 16 2007
From Zerinvary Lajos, Jun 12 2007: (Start)
a(n) = A000326(n) + A005476(n).
a(n) = A049452(n) - A001105(n). (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. - Harvey P. Dale, Oct 10 2011
a(n) = A118729(8n+2). - Philippe Deléham, Mar 26 2013
From Ilya Gutkovskiy, Dec 04 2016: (Start)
E.g.f.: x*(3 + 4*x)*exp(x).
Sum_{n>=1} 1/a(n) = 3*log(2) - Pi/2 = 0.50864521488... (End)
a(n) = Sum_{i=n..3n-1} i. - Wesley Ivan Hurt, Dec 04 2016
From Franck Maminirina Ramaharo, Mar 09 2018: (Start)
a(n) = binomial(2*n, 2) + 2*n^2.
a(n) = A054556(n+1) - 1. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi + log(3-2*sqrt(2)))/sqrt(2) - log(2). - Amiram Eldar, Mar 20 2022

Extensions

Two remarks combined into one by Emeric Deutsch, Oct 03 2010

A139273 a(n) = n*(8*n - 3).

Original entry on oeis.org

0, 5, 26, 63, 116, 185, 270, 371, 488, 621, 770, 935, 1116, 1313, 1526, 1755, 2000, 2261, 2538, 2831, 3140, 3465, 3806, 4163, 4536, 4925, 5330, 5751, 6188, 6641, 7110, 7595, 8096, 8613, 9146, 9695, 10260, 10841, 11438, 12051, 12680
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 5, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139277 in the same spiral.
Also, sequence of numbers of the form d*A000217(n-1) + 5*n with generating functions x*(5+(d-5)*x)/(1-x)^3; the inverse binomial transform is 0,5,d,0,0,.. (0 continued). See Crossrefs. - Bruno Berselli, Feb 11 2011
Even decagonal numbers divided by 2. - Omar E. Pol, Aug 19 2011

Crossrefs

Programs

  • Magma
    [ n*(8*n-3) : n in [0..40] ];  // Bruno Berselli, Feb 11 2011
    
  • Mathematica
    Table[n (8 n - 3), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 5, 26}, 40] (* Harvey P. Dale, Feb 02 2012 *)
  • PARI
    a(n)=n*(8*n-3) \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = 8*n^2 - 3*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 11 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
From Bruno Berselli, Feb 11 2011: (Start)
G.f.: x*(5 + 11*x)/(1 - x)^3.
a(n) = 4*A000217(n) + A051866(n). (End)
a(n) = A028994(n)/2. - Omar E. Pol, Aug 19 2011
a(0)=0, a(1)=5, a(2)=26; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Feb 02 2012
E.g.f.: (8*x^2 + 5*x)*exp(x). - G. C. Greubel, Jul 18 2017
Sum_{n>=1} 1/a(n) = 4*log(2)/3 - (sqrt(2)-1)*Pi/6 - sqrt(2)*arccoth(sqrt(2))/3. - Amiram Eldar, Jul 03 2020

A152743 6 times pentagonal numbers: a(n) = 3*n*(3*n-1).

Original entry on oeis.org

0, 6, 30, 72, 132, 210, 306, 420, 552, 702, 870, 1056, 1260, 1482, 1722, 1980, 2256, 2550, 2862, 3192, 3540, 3906, 4290, 4692, 5112, 5550, 6006, 6480, 6972, 7482, 8010, 8556, 9120, 9702, 10302, 10920, 11556, 12210, 12882, 13572, 14280, 15006, 15750, 16512, 17292
Offset: 0

Views

Author

Omar E. Pol, Dec 12 2008

Keywords

Comments

a(n) is also the Wiener index of the windmill graph D(4,n). The windmill graph D(m,n) is the graph obtained by taking n copies of the complete graph K_m with a vertex in common (i.e. a bouquet of n pieces of K_m graphs). The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph. The Wiener index of D(m,n) is (1/2)n(m-1)[(m-1)(2n-1)+1]. For the Wiener indices of D(3,n), D(5,n), and D(6,n) see A033991, A028994, and A180577, respectively. - Emeric Deutsch, Sep 21 2010
a(n+1) gives the number of edges in a hexagon-like honeycomb built from A003215(n) congruent regular hexagons (see link). Example: a hexagon-like honeycomb consisting of 7 congruent regular hexagons has 1 core hexagon inside a perimeter of six hexagons. The perimeter consists of 18 external edges. There are 6 edges shared by the perimeter hexagons. The core hexagon has 6 edges. a(2) is the total number of edges, i.e. 18 + 6 + 6 = 30. - Ivan N. Ianakiev, Mar 10 2015

Crossrefs

Programs

Formula

a(n) = 9n^2 - 3n = A000326(n)*6.
a(n) = A049450(n)*3 = A062741(n)*2. - Omar E. Pol, Dec 15 2008
a(n) = a(n-1) + 18*n - 12 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
G.f.: -((6*x*(2*x+1))/(x-1)^3). - Harvey P. Dale, Jun 30 2011
E.g.f.: 3*x*(2+3*x)*exp(x). - G. C. Greubel, Sep 01 2018
From Amiram Eldar, Feb 27 2022: (Start)
Sum_{n>=1} 1/a(n) = (9*log(3) - sqrt(3)*Pi)/18.
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi*sqrt(3) - 6*log(2))/9. (End)

Extensions

Converted reference to link by Omar E. Pol, Oct 07 2010

A028993 Odd 10-gonal (or decagonal) numbers.

Original entry on oeis.org

1, 27, 85, 175, 297, 451, 637, 855, 1105, 1387, 1701, 2047, 2425, 2835, 3277, 3751, 4257, 4795, 5365, 5967, 6601, 7267, 7965, 8695, 9457, 10251, 11077, 11935, 12825, 13747, 14701, 15687, 16705, 17755, 18837, 19951, 21097, 22275, 23485, 24727, 26001, 27307, 28645
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = (2*n+1)*(8*n+1). - N. J. A. Sloane
G.f.: -(7*x^2+24*x+1)/(x-1)^3. - Colin Barker, Nov 18 2012
Sum_{n>=0} 1/a(n) = (4*log(2) + (sqrt(2)+1)*Pi + 2*sqrt(2)*log(1+sqrt(2)))/12. - Amiram Eldar, Feb 27 2022
From Elmo R. Oliveira, Oct 27 2024: (Start)
E.g.f.: exp(x)*(1 + 26*x + 16*x^2).
a(n) = A005408(n)*A017077(n) = A001107(2*n+1).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A180577 The Wiener index of the windmill graph D(6,n). The windmill graph D(m,n) is the graph obtained by taking n copies of the complete graph K_m with a vertex in common (i.e., a bouquet of n pieces of K_m graphs).

Original entry on oeis.org

15, 80, 195, 360, 575, 840, 1155, 1520, 1935, 2400, 2915, 3480, 4095, 4760, 5475, 6240, 7055, 7920, 8835, 9800, 10815, 11880, 12995, 14160, 15375, 16640, 17955, 19320, 20735, 22200, 23715, 25280, 26895, 28560, 30275, 32040, 33855, 35720, 37635, 39600, 41615, 43680, 45795
Offset: 1

Views

Author

Emeric Deutsch, Sep 21 2010

Keywords

Comments

The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph.
The Wiener polynomial of D(m,n) is (1/2)n(m-1)t[(m-1)(n-1)t+m].
The Wiener index of D(m,n) is (1/2)n(m-1)[(m-1)(2n-1)+1].
For the Wiener indices of D(3,n), D(4,n), and D(5,n) see A033991, A152743, and A028994, respectively.

Crossrefs

Programs

Formula

a(n) = 5*n*(5*n-2).
G.f.: -5*x*(7*x+3)/(x-1)^3. - Colin Barker, Oct 30 2012
From Elmo R. Oliveira, Apr 03 2025: (Start)
E.g.f.: 5*exp(x)*x*(3 + 5*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

Extensions

More terms from Elmo R. Oliveira, Apr 03 2025

A028992 Even 9-gonal (or enneagonal) numbers.

Original entry on oeis.org

0, 24, 46, 154, 204, 396, 474, 750, 856, 1216, 1350, 1794, 1956, 2484, 2674, 3286, 3504, 4200, 4446, 5226, 5500, 6364, 6666, 7614, 7944, 8976, 9334, 10450, 10836, 12036, 12450, 13734, 14176, 15544, 16014, 17466, 17964, 19500, 20026, 21646, 22200, 23904
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(1/2)*(28*(n-1)^2 + 60*(n-1) + 33 + (14*(n-1)+15)*(-1)^(n-1)): n in [0..40]]; // Vincenzo Librandi, Aug 19 2011
    
  • PARI
    concat(0, Vec(-2*x*(3*x^3+30*x^2+11*x+12)/((x-1)^3*(x+1)^2) + O(x^100))) \\ Colin Barker, May 30 2015

Formula

a(n) = (1/2)*(28*(n-1)^2 + 60*(n-1) + 33 + (14*(n-1)+15)*(-1)^(n-1)).
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>4. - Colin Barker, May 30 2015
G.f.: -2*x*(3*x^3+30*x^2+11*x+12) / ((x-1)^3*(x+1)^2). - Colin Barker, May 30 2015

Extensions

0 inserted, offset and formula corrected by Omar E. Pol, Aug 19 2011

A180859 Square array read by antidiagonals: T(m,n) is the Wiener index of the windmill graph D(m,n) obtained by taking n copies of the complete graph K_m with a vertex in common (i.e., a bouquet of n pieces of K_m graphs; m>=2, n>=1).

Original entry on oeis.org

1, 3, 4, 6, 14, 9, 10, 30, 33, 16, 15, 52, 72, 60, 25, 21, 80, 126, 132, 95, 36, 28, 114, 195, 232, 210, 138, 49, 36, 154, 279, 360, 370, 306, 189, 64, 45, 200, 378, 516, 575, 540, 420, 248, 81, 55, 252, 492, 700, 825, 840, 742, 552, 315, 100, 66, 310, 621, 912, 1120, 1206, 1155, 976, 702, 390, 121
Offset: 2

Views

Author

Emeric Deutsch, Sep 25 2010

Keywords

Comments

The Wiener index of a connected graph is the sum of the distances between all unordered pairs of nodes in the graph.
For the Wiener indices of D(3,n), D(4,n), D(5,n) and D(6,n) see A033991, A152743, A028994, and A180577, respectively.

Examples

			T(3,2)=14 because the graph D(3,2) consists of two triangles OAB and OCD with a common node O; it has 6 distances equal to 1 (the edges) and 4 distances equal to 2 (AC, AD, BC, and BD); 6 * 1 + 4 * 2 = 14.
Square array starts:
   1,   4,   9,  16,  25, ...
   3,  14,  33,  60,  95, ...
   6,  30,  72, 132, 210, ...
  10,  52, 126, 232, 370, ...
		

Crossrefs

Programs

  • Maple
    T := proc (m, n) options operator, arrow: (1/2)*n*(m-1)*((m-1)*(2*n-1)+1) end proc: for p from 2 to 12 do seq(T(p+1-j, j), j = 1 .. p-1) end do; # yields sequence in triangular form
  • PARI
    T(m,n) = (1/2)*n*(m-1)*((m-1)*(2*n-1)+1);
    antidiag(n) = vector(n-1, k, k; T(n-k+1, k)); \\ Michel Marcus, Mar 09 2023

Formula

T(m,n) = (1/2)n(m-1)((m-1)(2n-1)+1).
The Wiener polynomial of D(m,n) is (1/2)n(m-1)t((m-1)(n-1)t+m).

A270704 Even 14-gonal (or tetradecagonal) numbers.

Original entry on oeis.org

0, 14, 76, 186, 344, 550, 804, 1106, 1456, 1854, 2300, 2794, 3336, 3926, 4564, 5250, 5984, 6766, 7596, 8474, 9400, 10374, 11396, 12466, 13584, 14750, 15964, 17226, 18536, 19894, 21300, 22754, 24256, 25806, 27404, 29050, 30744, 32486, 34276, 36114, 38000
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 22 2016

Keywords

Comments

First bisection of A051866.
More generally, the ordinary generating function for the even k-gonal numbers with even k or for the first bisection of k-gonal numbers, is (k*x + (3*k - 8)*x^2)/(1 - x )^3.

Crossrefs

Cf. similar sequences of the even k-gonal numbers with even k: A016742 (k = 4), A014635 (k = 6), A014642 (k = 8), A028994 (k = 10), A193872 (k = 12).

Programs

  • Mathematica
    LinearRecurrence[{3, -3, 1}, {0, 14, 76}, 41]
    Table[2 n (12 n - 5), {n, 0, 40}]
    PolygonalNumber[14,Range[0,80,2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 12 2017 *)
  • PARI
    concat(0, Vec(2*x*(7 + 17*x)/(1 - x)^3 + O(x^60))) \\ Michel Marcus, Mar 22 2016

Formula

G.f.: 2*x*(7 + 17*x)/(1 - x)^3.
E.g.f.: 2*exp(x)*x*(7 + 12*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*n*(12*n - 5).
a(n) = A005843(n)*A017605(n-1).
Sum_{n>=1} 1/a(n) = (Pi - sqrt(3)*Pi + sqrt(3)*log(27) + sqrt(3)*log(64) + log(1728) + 6*log(sqrt(3)-1) + 2*sqrt(3)*log(sqrt(3)-1) - 6*log(sqrt(3)+1) - 2*sqrt(3)*log(sqrt(3)+1))/(20 + 20*sqrt(3)) = 0.102542837854…
Showing 1-9 of 9 results.