cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029000 Expansion of 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^6)).

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 9, 12, 15, 18, 21, 27, 30, 36, 42, 48, 54, 64, 70, 80, 90, 100, 110, 125, 135, 150, 165, 180, 195, 216, 231, 252, 273, 294, 315, 343, 364, 392, 420, 448, 476, 512, 540, 576, 612, 648, 684, 729, 765, 810, 855, 900, 945, 1000, 1045, 1100
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 2, 3, and 6. - Joerg Arndt, Jul 04 2013

Programs

  • Magma
    [Floor(1/18*(-3*Floor((n + 2)/3) + 3*Floor(n/3) + 2)*(Floor(n/3) + 1) + 1/432*(n + 6)*(2*n^2 + 24*n + 47+9*(-1)^n) + 7/36): n in [0..80]]; // Vincenzo Librandi, May 12 2015
  • Mathematica
    CoefficientList[Series[1/((1 - x) (1 - x^2) (1 - x^3) (1 - x^6)), {x, 0, 80}], x] (* Vincenzo Librandi, May 12 2015 *)
  • PARI
    Vec(1/((1-x)*(1-x^2)*(1-x^3)*(1-x^6))+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
    

Formula

a(n) = floor((1/18)*(-3*floor((n + 2)/3) + 3*floor(n/3) + 2)*(floor(n/3) + 1) + (1/432)*(n + 6)*(2*n^2 + 24*n + 47+9*(-1)^n) + 7/36). - Tani Akinari, Jul 04 2013
a(n) = 1 + floor((2*n^3 + 36*n^2 + 183*n + 24*n*[(n mod 3)=0] + 9*n*(-1)^n)/432) where [] is Iverson bracket. - Hoang Xuan Thanh, Jun 10 2025

Extensions

More terms from Vincenzo Librandi, May 12 2015