cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A069183 Expansion of 1/((1-x)(1-x^2)^2(1-x^3)(1-x^6)).

Original entry on oeis.org

1, 1, 3, 4, 7, 9, 15, 18, 27, 33, 45, 54, 72, 84, 108, 126, 156, 180, 220, 250, 300, 340, 400, 450, 525, 585, 675, 750, 855, 945, 1071, 1176, 1323, 1449, 1617, 1764, 1960, 2128, 2352, 2548, 2800, 3024, 3312, 3564, 3888, 4176, 4536, 4860, 5265, 5625, 6075
Offset: 0

Views

Author

Rick L. Shepherd, Apr 10 2002

Keywords

Crossrefs

Cf. A029000.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( 1/((1-x)*(1-x^2)^2*(1-x^3)*(1-x^6)) )); // G. C. Greubel, May 26 2024
    
  • Mathematica
    CoefficientList[Series[1/((1-x)(1-x^3)(1-x^6)(1-x^2)^2), {x, 0, 100}], x] (* Jinyuan Wang, Mar 15 2020 *)
  • PARI
    a(n) = polcoeff(1/((1-x)*(1-x^2)^2*(1-x^3)*(1-x^6)+x*O(x^n)), n);
    
  • Sage
    def A069183_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x)*(1-x^2)^2*(1-x^3)*(1-x^6)) ).list()
    A069183_list(60) # G. C. Greubel, May 26 2024

Formula

G.f.: 1/((1-x)*(1-x^2)^2*(1-x^3)*(1-x^6)).
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - 2*a(n-4) - a(n-5) + 3*a(n-6) - 3*a(n-8) + a(n-9) + 2*a(n-10) + a(n-11) - 2*a(n-12) - a(n-13) + a(n-14). - Wesley Ivan Hurt, May 24 2024

A258133 Expansion of tri-digit zeros interlaced with an arithmetic progression of positive and negative numbers.

Original entry on oeis.org

1, 0, 0, 0, 2, -2, 2, 0, 0, 0, 3, -3, 3, 0, 0, 0, 4, -4, 4, 0, 0, 0, 5, -5, 5, 0, 0, 0, 6, -6, 6, 0, 0, 0, 7, -7, 7, 0, 0, 0, 8, -8, 8, 0, 0, 0, 9, -9, 9, 0, 0, 0, 10, -10, 10, 0, 0, 0, 11, -11, 11, 0, 0, 0, 12, -12, 12, 0, 0, 0, 13, -13, 13, 0, 0, 0, 14
Offset: 0

Views

Author

Avi Friedlich, May 21 2015

Keywords

Comments

This sequence is observed as the second difference in the expansion of 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^6)) (A029000), a sequence noted for its interlaced and structural coordination numbers.

Examples

			G.f. = 1 + 2*x^4 - 2*x^5 + 2*x^6 + 3*x^10 - 3*x^11 + 3*x^12 + 4*x^16 + ...
		

Programs

  • Mathematica
    a[ n_] := With[ {m=n-1}, If[ OddQ[ Quotient[ m, 3]], Quotient[ m+9, 6] (-1)^Mod[m, 3], 0]]; (* Michael Somos, Jun 07 2015 *)
  • PARI
    Vec((x^9-x^7-x^6+x^4-x^3+x+1)/((x-1)^2*(x+1)^2*(x^2-x+1)*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, May 24 2015
    
  • PARI
    {a(n) = n--; if(n\3%2, (n+9)\6 * (-1)^(n%3), 0)}; /* Michael Somos, Jun 07 2015 */

Formula

a(n) = -a(n-1) + a(n-3) + a(n-4) + a(n-6) + a(n-7) - a(n-9) - a(n-10). a(6*k-2) = -a(6*k-1) = a(6*k) = k+1 for k >= 1.
G.f.: (x^9-x^7-x^6+x^4-x^3+x+1) / ((x-1)^2*(x+1)^2*(x^2-x+1)*(x^2+x+1)^2). - Colin Barker, May 24 2015
a(n) = -a(-14-n) for all n in Z. - Michael Somos, Jun 07 2015
Showing 1-2 of 2 results.