A029653 Numbers in (2,1)-Pascal triangle (by row).
1, 2, 1, 2, 3, 1, 2, 5, 4, 1, 2, 7, 9, 5, 1, 2, 9, 16, 14, 6, 1, 2, 11, 25, 30, 20, 7, 1, 2, 13, 36, 55, 50, 27, 8, 1, 2, 15, 49, 91, 105, 77, 35, 9, 1, 2, 17, 64, 140, 196, 182, 112, 44, 10, 1, 2, 19, 81, 204, 336, 378, 294, 156, 54, 11, 1, 2, 21, 100, 285
Offset: 0
Examples
The triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 2 1 2: 2 3 1 3: 2 5 4 1 4: 2 7 9 5 1 5: 2 9 16 14 6 1 6: 2 11 25 30 20 7 1 7: 2 13 36 55 50 27 8 1 8: 2 15 49 91 105 77 35 9 1 9: 2 17 64 140 196 182 112 44 10 1 10: 2 19 81 204 336 378 294 156 54 11 1 ... Reformatted. - _Wolfdieter Lang_, Jan 09 2015 With the array M(k) as defined in the Formula section, the infinite product M(0)*M(1)*M(2)*... begins /1 \/1 \/1 \ /1 \ |2 1 ||0 1 ||0 1 | |2 1 | |2 1 1 ||0 2 1 ||0 0 1 |... = |2 3 1 | |2 1 1 1 ||0 2 1 1 ||0 0 2 1 | |2 5 4 1 | |2 1 1 1 1||0 2 1 1 1 ||0 0 2 1 1| |2 7 9 5 1| |... ||... ||... | |... | - _Peter Bala_, Dec 27 2014
References
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- Mohammad K. Azarian, Identities Involving Lucas or Fibonacci and Lucas Numbers as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 45, 2012, pp. 2221-2227.
- Paul Barry, A Note on a Family of Generalized Pascal Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.4.
- Hacene Belbachir and Athmane Benmezai, Expansion of Fibonacci and Lucas Polynomials: An Answer to Prodinger's Question, Journal of Integer Sequences, Vol. 15 (2012), #12.7.6.
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 39.
- H. Hosoya, Pascal's triangle, non-adjacent numbers and D-dimensional atomic orbitals, J. Math. Chemistry, vol. 23, 1998, 169-178.
- M. Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013
- M. Janjic and B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5
- Huyile Liang, Yanni Pei, and Yi Wang, Analytic combinatorics of coordination numbers of cubic lattices, arXiv:2302.11856 [math.CO], 2023. See p. 8.
- Mark C. Wilson, Asymptotics for generalized Riordan arrays. International Conference on Analysis of Algorithms DMTCS proc. AD. Vol. 323. 2005.
Crossrefs
Programs
-
Haskell
a029653 n k = a029653_tabl !! n !! k a029653_row n = a029653_tabl !! n a029653_tabl = [1] : iterate (\xs -> zipWith (+) ([0] ++ xs) (xs ++ [0])) [2, 1] -- Reinhard Zumkeller, Dec 16 2013
-
Maple
A029653 := proc(n,k) if n = 0 then 1; else binomial(n-1, k)+binomial(n, k) fi end proc: # R. J. Mathar, Jun 30 2013
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208510 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A029653 *) (* Clark Kimberling, Feb 28 2012 *)
-
Python
from sympy import Poly from sympy.abc import x def u(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x) def v(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x) + 1 def a(n): return Poly(v(n, x), x).all_coeffs()[::-1] for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 27 2017
-
Python
from math import comb, isqrt def A029653(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),a:=n-comb(r+1,2))*((r<<1)-a)//r if n else 1 # Chai Wah Wu, Nov 12 2024
Formula
T(n, k) = C(n-2, k-1) + C(n-2, k) + C(n-1, k-1) + C(n-1, k) except for n=0.
G.f.: (1 + x + y + xy)/(1 - y - xy). - Ralf Stephan, May 17 2004
T(n, k) = (2n-k)*binomial(n, n-k)/n, n, k > 0. - Paul Barry, Jan 30 2005
Sum_{k=0..n} T(n, k)*x^k gives A003945-A003954 for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. - Philippe Deléham, Jul 10 2005
T(n, k) = C(n-1, k) + C(n, k). - Philippe Deléham, Jul 10 2005
Equals A097806 * A007318, i.e., the pairwise operator * Pascal's Triangle as infinite lower triangular matrices. - Gary W. Adamson, Apr 22 2007
From Peter Bala, Dec 27 2014: (Start)
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(2 + 5*x + 4*x^2/2! + x^3/3!) = 2 + 7*x + 16*x^2/2! + 30*x^3/3! + 50*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ).
Let M denote the lower unit triangular array with 1's on the main diagonal and 1's everywhere else below the main diagonal except for the first column which consists of the sequence [1,2,2,2,...]. For k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/ having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle equals the infinite product M(0)*M(1)*M(2)*... (which is clearly well-defined). See the Example section. (End)
Extensions
More terms from James Sellers
Comments