cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029708 Numbers k such that k-2 and k+2 are consecutive primes.

Original entry on oeis.org

9, 15, 21, 39, 45, 69, 81, 99, 105, 111, 129, 165, 195, 225, 231, 279, 309, 315, 351, 381, 399, 441, 459, 465, 489, 501, 615, 645, 675, 741, 759, 771, 825, 855, 861, 879, 885, 909, 939, 969, 1011, 1089, 1095, 1215, 1281, 1299, 1305, 1425, 1431
Offset: 1

Views

Author

Keywords

Comments

All terms are multiples of 3. Minimal first difference is 6. - Zak Seidov, May 15 2013

Crossrefs

Essentially the same as A087679.

Programs

  • Magma
    [k:k in [1..1500]| IsPrime(k-2) and NextPrime(k-2) eq k+2 ]; // Marius A. Burtea, Jan 24 2019
  • Mathematica
    f[n_]:=PrimeQ[n-2]&&PrimeQ[n+2]; lst={};Do[If[f[n],AppendTo[lst,n]],{n,7,8!,2}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 09 2009 *)
    Select[Range[9,1432,6],PrimeQ[#-2]&&PrimeQ[#+2]&] (* Zak Seidov, May 15 2013 - just for terms in DATA *)
    Mean/@Select[Partition[Prime[Range[300]],2,1],#[[2]]-#[[1]]==4&] (* Harvey P. Dale, Feb 15 2020 *)

Formula

a(n) = (A029710(n) + A031505(n+1))/2 = A029710(n) + 2 = A031505(n+1) - 2.