A029730 Numbers that are palindromic in base 16.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255, 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 417, 433, 449, 465, 481, 497, 514, 530, 546, 562, 578, 594, 610, 626, 642
Offset: 1
Examples
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 11, 22, 33, 44, 55, 66, 77, 88, 99, AA, BB, CC, DD, EE, FF, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191,1A1, 1B1, 1C1, 1D1, 1E1, 1F1, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 2A2, 2B2, 2C2, 2D2, 2E2, 2F2, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 3A3, 3B3, 3C3, 3D3, 3E3, 3F3, 404, ... - _Reinhard Zumkeller_, Sep 23 2015
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Patrick De Geest, Palindromic numbers beyond base 10.
- Phakhinkon Phunphayap and Prapanpong Pongsriiam, Estimates for the Reciprocal Sum of b-adic Palindromes, 2019.
- Eric Weisstein's World of Mathematics, Palindromic Number.
- Eric Weisstein's World of Mathematics, Hexadecimal.
- Wikipedia, Palindromic number.
- Wikipedia, Hexadecimal.
- Index entries for sequences related to palindromes
Programs
-
Haskell
a029730 n = a029730_list !! (n-1) a029730_list = map (foldr (\h v -> 16 * v + h) 0) $ filter (\xs -> xs == reverse xs) a262437_tabf -- Reinhard Zumkeller, Sep 23 2015
-
Mathematica
palindromicQ[n_, b_] := Module[{i = IntegerDigits[n, b]}, i == Reverse[i]]; Select[Range[1000], palindromicQ[#, 16] &] (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
-
PARI
isok(n) = my(v=digits(n,16)); v == Vecrev(v); \\ Michel Marcus, Sep 30 2018
-
Python
def A029730(n): if n == 1: return 0 y = (x:=1<<(n.bit_length()-2&-4))<<4 return (c:=n-x)*x+int(hex(c)[-2:1:-1]or'0',16) if n
Chai Wah Wu, Jun 13 2024
Formula
Sum_{n>=2} 1/a(n) = 3.71109616... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020