A029804 Numbers that are palindromic in bases 8 and 10.
0, 1, 2, 3, 4, 5, 6, 7, 9, 121, 292, 333, 373, 414, 585, 3663, 8778, 13131, 13331, 26462, 26662, 30103, 30303, 207702, 628826, 660066, 1496941, 1935391, 1970791, 4198914, 55366355, 130535031, 532898235, 719848917, 799535997, 1820330281
Offset: 1
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..75
- Patrick De Geest, Palindromic numbers beyond base 10
- Rick Regan, Code to generate this sequence
Crossrefs
Programs
-
Magma
[n: n in [0..10000000] | Intseq(n, 10) eq Reverse(Intseq(n, 10))and Intseq(n, 8) eq Reverse(Intseq(n, 8))]; // Vincenzo Librandi, Nov 23 2014
-
Mathematica
b1=8; b2=10; lst={}; Do[d1=IntegerDigits[n, b1];d2=IntegerDigits[n,b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 100000}]; lst (* Vincenzo Librandi, Nov 13 2014 *) Select[Range[0,1820331000],PalindromeQ[#]&&IntegerDigits[#,8] == Reverse[ IntegerDigits[#,8]]&] (* Harvey P. Dale, Mar 18 2019 *)
-
PARI
isok(n) = (n==0) || ((d10=digits(n, 10)) && (d10==Vecrev(d10)) && (d8=digits(n, 8)) && (d8==Vecrev(d8))); \\ Michel Marcus, Nov 13 2014
-
PARI
ispal(n,r) = my(d=digits(n,r)); d==Vecrev(d); for(n=0,10^7,if(ispal(n,10)&&ispal(n,8),print1(n,", "))); \\ Joerg Arndt, Nov 22 2014
-
Python
def palQ8(n): # check if n is a palindrome in base 8 s = oct(n)[2:] return s == s[::-1] def palQgen10(l): # unordered generator of palindromes of length <= 2*l if l > 0: yield 0 for x in range(1,10**l): s = str(x) yield int(s+s[-2::-1]) yield int(s+s[::-1]) A029804_list = sorted([n for n in palQgen10(6) if palQ8(n)]) # Chai Wah Wu, Nov 25 2014
Extensions
More terms from Robert G. Wilson v, Sep 30 2004
Incorrect Mathematica program deleted by N. J. A. Sloane, Sep 01 2009
Terms 33 through 36 corrected by Rick Regan (exploringbinary(AT)gmail.com), Sep 01 2009
Comments