cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029804 Numbers that are palindromic in bases 8 and 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 121, 292, 333, 373, 414, 585, 3663, 8778, 13131, 13331, 26462, 26662, 30103, 30303, 207702, 628826, 660066, 1496941, 1935391, 1970791, 4198914, 55366355, 130535031, 532898235, 719848917, 799535997, 1820330281
Offset: 1

Views

Author

Keywords

Comments

Intersection of A002113 and A029803. - Michel Marcus, Nov 20 2014

Crossrefs

Programs

  • Magma
    [n: n in [0..10000000] | Intseq(n, 10) eq Reverse(Intseq(n, 10))and Intseq(n, 8) eq Reverse(Intseq(n, 8))]; // Vincenzo Librandi, Nov 23 2014
    
  • Mathematica
    b1=8; b2=10; lst={}; Do[d1=IntegerDigits[n, b1];d2=IntegerDigits[n,b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 100000}]; lst (* Vincenzo Librandi, Nov 13 2014 *)
    Select[Range[0,1820331000],PalindromeQ[#]&&IntegerDigits[#,8] == Reverse[ IntegerDigits[#,8]]&] (* Harvey P. Dale, Mar 18 2019 *)
  • PARI
    isok(n) = (n==0) || ((d10=digits(n, 10)) && (d10==Vecrev(d10)) && (d8=digits(n, 8)) && (d8==Vecrev(d8))); \\ Michel Marcus, Nov 13 2014
    
  • PARI
    ispal(n,r) = my(d=digits(n,r)); d==Vecrev(d);
    for(n=0,10^7,if(ispal(n,10)&&ispal(n,8),print1(n,", "))); \\ Joerg Arndt, Nov 22 2014
    
  • Python
    def palQ8(n): # check if n is a palindrome in base 8
        s = oct(n)[2:]
        return s == s[::-1]
    def palQgen10(l): # unordered generator of palindromes of length <= 2*l
        if l > 0:
            yield 0
            for x in range(1,10**l):
                s = str(x)
                yield int(s+s[-2::-1])
                yield int(s+s[::-1])
    A029804_list = sorted([n for n in palQgen10(6) if palQ8(n)])
    # Chai Wah Wu, Nov 25 2014

Extensions

More terms from Robert G. Wilson v, Sep 30 2004
Incorrect Mathematica program deleted by N. J. A. Sloane, Sep 01 2009
Terms 33 through 36 corrected by Rick Regan (exploringbinary(AT)gmail.com), Sep 01 2009