cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A001423 Number of semigroups of order n, considered to be equivalent when they are isomorphic or anti-isomorphic (by reversal of the operator).

Original entry on oeis.org

1, 1, 4, 18, 126, 1160, 15973, 836021, 1843120128, 52989400714478, 12418001077381302684
Offset: 0

Views

Author

Keywords

References

  • David Nacin, "Puzzles, Parity Maps, and Plenty of Solutions", Chapter 15, The Mathematics of Various Entertaining Subjects: Volume 3 (2019), Jennifer Beineke & Jason Rosenhouse, eds. Princeton University Press, Princeton and Oxford, p. 245.
  • R. J. Plemmons, There are 15973 semigroups of order 6, Math. Algor., 2 (1967), 2-17; 3 (1968), 23.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = (A027851(n) + A029851(n))/2.

Extensions

a(9) added by Andreas Distler, Jan 12 2011
a(10) from Distler et al. 2012, added by Andrey Zabolotskiy, Nov 08 2018

A027851 Number of nonisomorphic semigroups of order n.

Original entry on oeis.org

1, 1, 5, 24, 188, 1915, 28634, 1627672, 3684030417, 105978177936292
Offset: 0

Views

Author

Christian G. Bower, Dec 13 1997, updated Feb 19 2001

Keywords

Crossrefs

Formula

a(n) = A001423(n)*2 - A029851(n).
a(n) + A079173(n) = A001329(n).

Extensions

a(8)-a(9) from Andreas Distler, Jan 13 2011

A058118 Triangle: self-converse semigroups of order n with k idempotents.

Original entry on oeis.org

1, 2, 1, 5, 5, 2, 18, 24, 16, 6, 93, 123, 112, 58, 19, 930, 754, 764, 542, 254, 68, 22899, 6721, 5567, 4751, 2933, 1214, 285, 1937266, 123988, 49969, 41939, 31392, 17396, 6513, 1376, 613365656, 8265721, 739317, 410158, 328937, 223226, 113160, 38979, 7510
Offset: 1

Views

Author

Christian G. Bower, Nov 10 2000

Keywords

Examples

			1; 2,1; 5,5,2; 18,24,16,6; 93,123,112,58,19; ...
		

Crossrefs

Row sums give A029851. Main diagonal: A058122. Columns 1-3: A058119-A058121.

Extensions

More terms from Andreas Distler, Jan 13 2011

A058106 Number of self-converse asymmetric semigroups of order n.

Original entry on oeis.org

1, 1, 3, 9, 44, 271, 2246, 33672
Offset: 0

Views

Author

Christian G. Bower, Nov 09 2000

Keywords

Crossrefs

Cf. A029851.

Extensions

Updated Feb 19 2001

A118581 Number of nonisomorphic semigroups of order <= n.

Original entry on oeis.org

1, 2, 7, 31, 219, 2134, 30768, 1658440, 3685688857, 105981863625149
Offset: 0

Views

Author

Jonathan Vos Post, May 07 2006

Keywords

Comments

Semigroup analog of A063756 Number of groups of order <= n. a semigroup is an algebraic structure consisting of a set S closed under an associative binary operation (and thus is an associative groupoid). Some sources require that a semigroup have an identity element (in which case semigroups are identical to monoids). Not all sources agree that S should be nonempty. This sequence assumes that a semigroup may be empty and need not have an identity.

Examples

			a(7) = 1658440 = 1 + 1 + 5 + 24 + 188 + 1915 + 28634 + 1627672.
		

Crossrefs

Formula

a(n) = Sum_{i=0..n} A027851(i). a(n) = Sum_{i=0..n} (2*A001423(i) - A029851(i)).

Extensions

a(8)-a(9) (using A027851) from Giovanni Resta, Jun 16 2016

A118601 Partial sums of A058129.

Original entry on oeis.org

1, 3, 10, 45, 273, 2510, 34069, 1703066
Offset: 1

Views

Author

Jonathan Vos Post, May 08 2006

Keywords

Crossrefs

Formula

a(n) = SUM[i=1..n] A058129(i). a(n) = SUM[i=1..n] (2*A058133(i) - A058132(i)).

Extensions

One more term from Jonathan Vos Post, Jul 20 2009
Edited by N. J. A. Sloane, Jul 25 2009

A186117 Number of nonisomorphic semigroups of order n minus number of groups of order n.

Original entry on oeis.org

0, 4, 23, 186, 1914, 28632, 1627671, 3684030412, 105978177936290
Offset: 1

Views

Author

Jonathan Vos Post, Feb 13 2011

Keywords

Comments

In a sense, this measures the increase in combinatorial structures available by dropping the requirement of inverses, and an identity element, in moving from the group axioms to the semigroup axioms. A semigroup is mathematical object defined for a set and a binary operator in which the multiplication operation is associative. No other restrictions are placed on a semigroup; thus a semigroup need not have an identity element and its elements need not have inverses within the semigroup. Other sequences may be derived by considering commutative semigroups and commutative groups, self-converse semigroup, counting idempotents, and the like.

Examples

			a(1) = 0 because there are unique groups and semigroups of order 1, so 1 - 1  = 0.
a(2) = 4 because there are 5 semigroups of order 2 groups and a unique group of order 2, so 5 - 1  = 4.
		

Crossrefs

Formula

a(n) = A027851(n) - A000001(n).
Showing 1-7 of 7 results.