A029959 Numbers that are palindromic in base 14.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 197, 211, 225, 239, 253, 267, 281, 295, 309, 323, 337, 351, 365, 379, 394, 408, 422, 436, 450, 464, 478, 492, 506, 520, 534, 548, 562, 576, 591
Offset: 1
Examples
195 is DD in base 14. 196 is 100 in base 14, so it's not in the sequence. 197 is 101 in base 14.
Links
- John Cerkan, Table of n, a(n) for n = 1..10000
- Javier Cilleruelo, Florian Luca and Lewis Baxter, Every positive integer is a sum of three palindromes, Mathematics of Computation, Vol. 87, No. 314 (2018), pp. 3023-3055, arXiv preprint, arXiv:1602.06208 [math.NT], 2017.
- Patrick De Geest, Palindromic numbers beyond base 10.
- Phakhinkon Phunphayap and Prapanpong Pongsriiam, Estimates for the Reciprocal Sum of b-adic Palindromes, 2019.
- Index entries for sequences that are an additive basis, order 3.
Crossrefs
Programs
-
Mathematica
palQ[n_, b_:10] := Module[{idn = IntegerDigits[n, b]}, idn == Reverse[idn]]; Select[ Range[0, 600], palQ[#, 14] &] (* Harvey P. Dale, Aug 03 2014 *)
-
PARI
isok(n) = Pol(d=digits(n, 14)) == Polrev(d); \\ Michel Marcus, Mar 12 2017
-
Python
from sympy import integer_log from gmpy2 import digits def A029959(n): if n == 1: return 0 y = 14*(x:=14**integer_log(n>>1,14)[0]) return int((c:=n-x)*x+int(digits(c,14)[-2::-1]or'0',14) if n
Chai Wah Wu, Jun 14 2024
Formula
Sum_{n>=2} 1/a(n) = 3.6112482... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020
Comments