cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A029957 Numbers that are palindromic in base 12.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 26, 39, 52, 65, 78, 91, 104, 117, 130, 143, 145, 157, 169, 181, 193, 205, 217, 229, 241, 253, 265, 277, 290, 302, 314, 326, 338, 350, 362, 374, 386, 398, 410, 422, 435, 447, 459, 471, 483, 495, 507, 519, 531
Offset: 1

Views

Author

Keywords

Comments

Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 04 2020

Crossrefs

Cf. A029958, A029959, A029960 (in bases 13..15).

Programs

  • Mathematica
    f[n_,b_]:=Module[{i=IntegerDigits[n,b]},i==Reverse[i]];lst={};Do[If[f[n,12],AppendTo[lst,n]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
  • PARI
    isok(n) = my(d=digits(n, 12)); d == Vecrev(d); \\ Michel Marcus, May 13 2017
    
  • Python
    from sympy import integer_log
    from gmpy2 import digits
    def A029957(n):
        if n == 1: return 0
        y = 12*(x:=12**integer_log(n>>1,12)[0])
        return int((c:=n-x)*x+int(digits(c,12)[-2::-1]or'0',12) if nChai Wah Wu, Jun 14 2024

Formula

Sum_{n>=2} 1/a(n) = 3.4989489... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020

A029960 Numbers that are palindromic in base 15.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 226, 241, 256, 271, 286, 301, 316, 331, 346, 361, 376, 391, 406, 421, 436, 452, 467, 482, 497, 512, 527, 542, 557, 572, 587, 602, 617
Offset: 1

Views

Author

Keywords

Comments

Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 04 2020

Crossrefs

Programs

  • Mathematica
    f[n_,b_]:=Module[{i=IntegerDigits[n,b]},i==Reverse[i]];lst={};Do[If[f[n,15],AppendTo[lst,n]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
    Select[Range@ 620, PalindromeQ@ IntegerDigits[#, 15] &] (* Michael De Vlieger, May 13 2017, Version 10.3 *)
  • PARI
    isok(n) = my(d=digits(n, 15)); d == Vecrev(d); \\ Michel Marcus, May 14 2017
    
  • Python
    from sympy import integer_log
    from gmpy2 import digits
    def A029960(n):
        if n == 1: return 0
        y = 15*(x:=15**integer_log(n>>1,15)[0])
        return int((c:=n-x)*x+int(digits(c,15)[-2::-1]or'0',15) if nChai Wah Wu, Jun 14 2024

Formula

Sum_{n>=2} 1/a(n) = 3.66254285... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020

A297283 Numbers whose base-14 digits have equal down-variation and up-variation; see Comments.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 197, 211, 225, 239, 253, 267, 281, 295, 309, 323, 337, 351, 365, 379, 394, 408, 422, 436, 450, 464, 478, 492, 506, 520, 534, 548, 562, 576, 591, 605, 619
Offset: 1

Views

Author

Clark Kimberling, Jan 17 2018

Keywords

Comments

Suppose that n has base-b digits b(m), b(m-1), ..., b(0). The base-b down-variation of n is the sum DV(n,b) of all d(i)-d(i-1) for which d(i) > d(i-1); the base-b up-variation of n is the sum UV(n,b) of all d(k-1)-d(k) for which d(k) < d(k-1). The total base-b variation of n is the sum TV(n,b) = DV(n,b) + UV(n,b). See the guide at A297330.
Differs first from A029959 after the zero for 2759 = 1011_14, which is not a palindrome in base 14 but has UV(2759,14) = DV(2759,14) = 1. - R. J. Mathar, Jan 23 2018

Examples

			619 in base-14:  3,2,3 having DV = 1, UV = 1, so that 619 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    g[n_, b_] := Map[Total, GatherBy[Differences[IntegerDigits[n, b]], Sign]];
    x[n_, b_] := Select[g[n, b], # < 0 &]; y[n_, b_] := Select[g[n, b], # > 0 &];
    b = 14; z = 2000; p = Table[x[n, b], {n, 1, z}]; q = Table[y[n, b], {n, 1, z}];
    w = Sign[Flatten[p /. {} -> {0}] + Flatten[q /. {} -> {0}]];
    Take[Flatten[Position[w, -1]], 120]   (* A297282 *)
    Take[Flatten[Position[w, 0]], 120]    (* A297283 *)
    Take[Flatten[Position[w, 1]], 120]    (* A297284 *)

A046250 Cubes which are palindromes in base 14.

Original entry on oeis.org

0, 1, 8, 3375, 7645373, 9393931, 97972181, 20683643625, 25803133875, 56698339857713, 57570584012397, 69807297234375, 155568963323390625, 158134170512197125, 191356897019781375, 426879024292396457153
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

Intersection of A029959 and A000578.
Cf. A046249.

Formula

a(n) = A046249(n)^3. - Andrew Howroyd, Aug 10 2024

Extensions

Offset corrected by Andrew Howroyd, Aug 10 2024

A043273 Sum of the digits of the n-th base 14 palindrome.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 8, 9, 10
Offset: 1

Views

Author

Keywords

Crossrefs

A029959 (base 14 palindromes)

Programs

  • Mathematica
    Table[With[{id14=IntegerDigits[n,14]},If[id14==Reverse[id14],Total[id14],Nothing]],{n,0,1000}]  (* Harvey P. Dale, Oct 10 2024 *)
Showing 1-5 of 5 results.