A029956
Numbers that are palindromic in base 11.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 122, 133, 144, 155, 166, 177, 188, 199, 210, 221, 232, 244, 255, 266, 277, 288, 299, 310, 321, 332, 343, 354, 366, 377, 388, 399, 410, 421, 432, 443, 454, 465, 476, 488, 499
Offset: 1
- John Cerkan, Table of n, a(n) for n = 1..10000
- Javier Cilleruelo, Florian Luca and Lewis Baxter, Every positive integer is a sum of three palindromes, Mathematics of Computation, Vol. 87, No. 314 (2018), pp. 3023-3055, arXiv preprint, arXiv:1602.06208 [math.NT], 2017.
- Patrick De Geest, Palindromic numbers beyond base 10.
- Phakhinkon Phunphayap and Prapanpong Pongsriiam, Estimates for the Reciprocal Sum of b-adic Palindromes, 2019.
- Index entries for sequences that are an additive basis, order 3.
-
f[n_,b_]:=Module[{i=IntegerDigits[n,b]},i==Reverse[i]];lst={};Do[If[f[n,11],AppendTo[lst,n]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
pal11Q[n_]:=Module[{idn11=IntegerDigits[n,11]},idn11==Reverse[idn11]]; Select[Range[0,500],pal11Q] (* Harvey P. Dale, May 11 2015 *)
Select[Range[0, 500], PalindromeQ[IntegerDigits[#, 11]] &] (* Michael De Vlieger, May 12 2017, Version 10.3 *)
-
ispal(n,b)=my(tmp,d=log(n+.5)\log(b)-1);while(d,tmp=n%b;n\=b;if(n\b^d!=tmp,return(0));n=n%(b^d);d-=2;);d<0||n%(b+1)==0
is(n)=ispal(n,11) \\ Charles R Greathouse IV, Aug 21 2012
-
ispal(n,b=11)=my(d=digits(n,b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 04 2020
-
from gmpy2 import digits
from sympy import integer_log
def A029956(n):
if n == 1: return 0
y = 11*(x:=11**integer_log(n>>1,11)[0])
return int((c:=n-x)*x+int(digits(c,11)[-2::-1]or'0',11) if nChai Wah Wu, Jun 14 2024
-
[n for n in (0..499) if Word(n.digits(11)).is_palindrome()] # Peter Luschny, Sep 13 2018
A029958
Numbers that are palindromic in base 13.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 28, 42, 56, 70, 84, 98, 112, 126, 140, 154, 168, 170, 183, 196, 209, 222, 235, 248, 261, 274, 287, 300, 313, 326, 340, 353, 366, 379, 392, 405, 418, 431, 444, 457, 470, 483, 496, 510, 523, 536, 549, 562
Offset: 1
- John Cerkan, Table of n, a(n) for n = 1..10000
- Javier Cilleruelo, Florian Luca and Lewis Baxter, Every positive integer is a sum of three palindromes, Mathematics of Computation, Vol. 87, No. 314 (2018), pp. 3023-3055, arXiv preprint, arXiv:1602.06208 [math.NT], 2017.
- Patrick De Geest, Palindromic numbers beyond base 10.
- Phakhinkon Phunphayap and Prapanpong Pongsriiam, Estimates for the Reciprocal Sum of b-adic Palindromes, 2019.
- Index entries for sequences that are an additive basis, order 3.
Palindromes in bases 2 through 12:
A006995,
A014190,
A014192,
A029952,
A029953,
A029954,
A029803,
A029955,
A002113,
A029956,
A029957.
-
f[n_,b_]:=Module[{i=IntegerDigits[n,b]},i==Reverse[i]];lst={};Do[If[f[n,13],AppendTo[lst,n]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
Select[Range[0,600],IntegerDigits[#,13]==Reverse[IntegerDigits[#,13]]&] (* Harvey P. Dale, Nov 16 2022 *)
-
isok(n) = my(d=digits(n, 13)); d == Vecrev(d); \\ Michel Marcus, May 13 2017
-
from sympy import integer_log
from gmpy2 import digits
def A029958(n):
if n == 1: return 0
y = 13*(x:=13**integer_log(n>>1,13)[0])
return int((c:=n-x)*x+int(digits(c,13)[-2::-1]or'0',13) if nChai Wah Wu, Jun 14 2024
A029959
Numbers that are palindromic in base 14.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 197, 211, 225, 239, 253, 267, 281, 295, 309, 323, 337, 351, 365, 379, 394, 408, 422, 436, 450, 464, 478, 492, 506, 520, 534, 548, 562, 576, 591
Offset: 1
195 is DD in base 14.
196 is 100 in base 14, so it's not in the sequence.
197 is 101 in base 14.
- John Cerkan, Table of n, a(n) for n = 1..10000
- Javier Cilleruelo, Florian Luca and Lewis Baxter, Every positive integer is a sum of three palindromes, Mathematics of Computation, Vol. 87, No. 314 (2018), pp. 3023-3055, arXiv preprint, arXiv:1602.06208 [math.NT], 2017.
- Patrick De Geest, Palindromic numbers beyond base 10.
- Phakhinkon Phunphayap and Prapanpong Pongsriiam, Estimates for the Reciprocal Sum of b-adic Palindromes, 2019.
- Index entries for sequences that are an additive basis, order 3.
Palindromes in bases 2 through 13:
A006995,
A014190,
A014192,
A029952,
A029953,
A029954,
A029803,
A029955,
A002113,
A029956,
A029957,
A029958.
-
palQ[n_, b_:10] := Module[{idn = IntegerDigits[n, b]}, idn == Reverse[idn]]; Select[ Range[0, 600], palQ[#, 14] &] (* Harvey P. Dale, Aug 03 2014 *)
-
isok(n) = Pol(d=digits(n, 14)) == Polrev(d); \\ Michel Marcus, Mar 12 2017
-
from sympy import integer_log
from gmpy2 import digits
def A029959(n):
if n == 1: return 0
y = 14*(x:=14**integer_log(n>>1,14)[0])
return int((c:=n-x)*x+int(digits(c,14)[-2::-1]or'0',14) if nChai Wah Wu, Jun 14 2024
A029960
Numbers that are palindromic in base 15.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 226, 241, 256, 271, 286, 301, 316, 331, 346, 361, 376, 391, 406, 421, 436, 452, 467, 482, 497, 512, 527, 542, 557, 572, 587, 602, 617
Offset: 1
- John Cerkan, Table of n, a(n) for n = 1..10000
- Javier Cilleruelo, Florian Luca and Lewis Baxter, Every positive integer is a sum of three palindromes, Mathematics of Computation, Vol. 87, No. 314 (2018), pp. 3023-3055, arXiv preprint, arXiv:1602.06208 [math.NT], 2017.
- Patrick De Geest, Palindromic numbers beyond base 10.
- Phakhinkon Phunphayap and Prapanpong Pongsriiam, Estimates for the Reciprocal Sum of b-adic Palindromes, 2019.
- Index entries for sequences that are an additive basis, order 3.
Palindromes in bases 2 through 14:
A006995,
A014190,
A014192,
A029952,
A029953,
A029954,
A029803,
A029955,
A002113,
A029956,
A029957,
A029958,
A029959.
-
f[n_,b_]:=Module[{i=IntegerDigits[n,b]},i==Reverse[i]];lst={};Do[If[f[n,15],AppendTo[lst,n]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
Select[Range@ 620, PalindromeQ@ IntegerDigits[#, 15] &] (* Michael De Vlieger, May 13 2017, Version 10.3 *)
-
isok(n) = my(d=digits(n, 15)); d == Vecrev(d); \\ Michel Marcus, May 14 2017
-
from sympy import integer_log
from gmpy2 import digits
def A029960(n):
if n == 1: return 0
y = 15*(x:=15**integer_log(n>>1,15)[0])
return int((c:=n-x)*x+int(digits(c,15)[-2::-1]or'0',15) if nChai Wah Wu, Jun 14 2024
A262065
Numbers that are palindromes in base-60 representation.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 122, 183, 244, 305, 366
Offset: 1
. n | a(n) | base 60 n | a(n) | base 60
. -----+------+----------- ------+-------+--------------
. 100 | 2440 | [40, 40] 1000 | 56415 | [15, 40, 15]
. 101 | 2501 | [41, 41] 1001 | 56475 | [15, 41, 15]
. 102 | 2562 | [42, 42] 1002 | 56535 | [15, 42, 15]
. 103 | 2623 | [43, 43] 1003 | 56595 | [15, 43, 15]
. 104 | 2684 | [44, 44] 1004 | 56655 | [15, 44, 15]
. 105 | 2745 | [45, 45] 1005 | 56715 | [15, 45, 15]
. 106 | 2806 | [46, 46] 1006 | 56775 | [15, 46, 15]
. 107 | 2867 | [47, 47] 1007 | 56835 | [15, 47, 15]
. 108 | 2928 | [48, 48] 1008 | 56895 | [15, 48, 15]
. 109 | 2989 | [49, 49] 1009 | 56955 | [15, 49, 15]
. 110 | 3050 | [50, 50] 1010 | 57015 | [15, 50, 15]
. 111 | 3111 | [51, 51] 1011 | 57075 | [15, 51, 15]
. 112 | 3172 | [52, 52] 1012 | 57135 | [15, 52, 15]
. 113 | 3233 | [53, 53] 1013 | 57195 | [15, 53, 15]
. 114 | 3294 | [54, 54] 1014 | 57255 | [15, 54, 15]
. 115 | 3355 | [55, 55] 1015 | 57315 | [15, 55, 15]
. 116 | 3416 | [56, 56] 1016 | 57375 | [15, 56, 15]
. 117 | 3477 | [57, 57] 1017 | 57435 | [15, 57, 15]
. 118 | 3538 | [58, 58] 1018 | 57495 | [15, 58, 15]
. 119 | 3599 | [59, 59] 1019 | 57555 | [15, 59, 15]
. 120 | 3601 | [1, 0, 1] 1020 | 57616 | [16, 0, 16]
. 121 | 3661 | [1, 1, 1] 1021 | 57676 | [16, 1, 16]
. 122 | 3721 | [1, 2, 1] 1022 | 57736 | [16, 2, 16]
. 123 | 3781 | [1, 3, 1] 1023 | 57796 | [16, 3, 16]
. 124 | 3841 | [1, 4, 1] 1024 | 57856 | [16, 4, 16]
. 125 | 3901 | [1, 5, 1] 1025 | 57916 | [16, 5, 16] .
Corresponding sequences for bases 2 through 12:
A006995,
A014190,
A014192,
A029952,
A029953,
A029954,
A029803,
A029955,
A002113,
A029956,
A029957.
-
import Data.List.Ordered (union)
a262065 n = a262065_list !! (n-1)
a262065_list = union us vs where
us = [val60 $ bs ++ reverse bs | bs <- bss]
vs = [0..59] ++ [val60 $ bs ++ cs ++ reverse bs |
bs <- tail bss, cs <- take 60 bss]
bss = iterate s [0] where
s [] = [1]; s (59:ds) = 0 : s ds; s (d:ds) = (d + 1) : ds
val60 = foldr (\b v -> 60 * v + b) 0
-
[n: n in [0..600] | Intseq(n, 60) eq Reverse(Intseq(n, 60))]; // Vincenzo Librandi, Aug 24 2016
-
f[n_, b_]:=Module[{i=IntegerDigits[n, b]}, i==Reverse[i]]; lst={}; Do[If[f[n, 60], AppendTo[lst, n]], {n, 400}]; lst (* Vincenzo Librandi, Aug 24 2016 *)
pal60Q[n_]:=Module[{idn60=IntegerDigits[n,60]},idn60==Reverse[idn60]]; Select[Range[0,400],pal60Q] (* Harvey P. Dale, Nov 04 2017 *)
-
isok(m) = my(d=digits(m, 60)); d == Vecrev(d); \\ Michel Marcus, Jan 22 2022
-
from sympy import integer_log
from gmpy2 import digits, mpz
def A262065(n):
if n == 1: return 0
y = 60*(x:=60**integer_log(n>>1,60)[0])
return int((c:=n-x)*x+mpz(digits(c,60)[-2::-1]or'0',60) if nChai Wah Wu, Jun 13-14 2024
A297277
Numbers whose base-12 digits have equal down-variation and up-variation; see Comments.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 26, 39, 52, 65, 78, 91, 104, 117, 130, 143, 145, 157, 169, 181, 193, 205, 217, 229, 241, 253, 265, 277, 290, 302, 314, 326, 338, 350, 362, 374, 386, 398, 410, 422, 435, 447, 459, 471, 483, 495, 507, 519, 531, 543, 555
Offset: 1
555 in base-12: 3,10,3, having DV = 7, UV = 7, so that 555 is in the sequence.
-
g[n_, b_] := Map[Total, GatherBy[Differences[IntegerDigits[n, b]], Sign]];
x[n_, b_] := Select[g[n, b], # < 0 &]; y[n_, b_] := Select[g[n, b], # > 0 &];
b = 12; z = 2000; p = Table[x[n, b], {n, 1, z}]; q = Table[y[n, b], {n, 1, z}];
w = Sign[Flatten[p /. {} -> {0}] + Flatten[q /. {} -> {0}]];
Take[Flatten[Position[w, -1]], 120] (* A297276 *)
Take[Flatten[Position[w, 0]], 120] (* A297277 *)
Take[Flatten[Position[w, 1]], 120] (* A297278 *)
A046246
Cubes which are palindromes in base 12.
Original entry on oeis.org
0, 1, 8, 2197, 3048625, 3869893, 5168743489, 8917390455553, 9104453457841, 11355729445333, 15407207327425537, 15757560619152625, 19591506830849941, 26623360029195546625, 26669607878348076097, 33849634498353904789
Offset: 1
A253241
The "Reverse and Add!" problem in base 12: sequence lists the final palindrome number for n, or -1 if no palindrome is ever reached. (Written in base 10.)
Original entry on oeis.org
0, 2, 4, 6, 8, 10, 13, 39, 65, 91, 117, 143, 13, 26, 39, 52, 65, 78, 91, 104, 117, 130, 143, 169, 26, 39, 52, 65, 78, 91, 104, 117, 130, 143, 169, 169, 39, 52, 65, 78, 91, 104, 117, 130, 143, 169, 169, 507, 52, 65, 78, 91, 104, 117, 130, 143, 169, 169, 507, 676, 65, 78, 91, 104, 117
Offset: 0
a(29) = 91 since (in duodecimal) 25 (decimal 29) + 52 = 77 (decimal 91) and 77 is a palindrome.
a(69) = 507 since (in duodecimal) 59 (decimal 69) + 95 = 132, 132 + 231 = 363 (decimal 507) and 363 is a palindrome.
a(105) = 1885 since (in duodecimal) 89 (decimal 105) + 98 = 165, 165 + 561 = 706, 706 + 607 = 1111 (decimal 1885) and 1111 is a palindrome.
-
tol = 1728; r[n_] := FromDigits[Reverse[IntegerDigits[n, 12]], 12]; palQ[n_] := n == r[n]; ar[n_] := n + r[n]; Table[k = 0; If[palQ[n], n = ar[n]; k = 1]; While[! palQ[n] && k < tol, n = ar[n]; k++]; If[k == tol, n = -1]; n, {n, 0, 144}]
A043271
Sum of the digits of the n-th base 12 palindrome.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 10
Offset: 1
Showing 1-9 of 9 results.
Comments