cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A029957 Numbers that are palindromic in base 12.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 26, 39, 52, 65, 78, 91, 104, 117, 130, 143, 145, 157, 169, 181, 193, 205, 217, 229, 241, 253, 265, 277, 290, 302, 314, 326, 338, 350, 362, 374, 386, 398, 410, 422, 435, 447, 459, 471, 483, 495, 507, 519, 531
Offset: 1

Views

Author

Keywords

Comments

Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 04 2020

Crossrefs

Cf. A029958, A029959, A029960 (in bases 13..15).

Programs

  • Mathematica
    f[n_,b_]:=Module[{i=IntegerDigits[n,b]},i==Reverse[i]];lst={};Do[If[f[n,12],AppendTo[lst,n]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
  • PARI
    isok(n) = my(d=digits(n, 12)); d == Vecrev(d); \\ Michel Marcus, May 13 2017
    
  • Python
    from sympy import integer_log
    from gmpy2 import digits
    def A029957(n):
        if n == 1: return 0
        y = 12*(x:=12**integer_log(n>>1,12)[0])
        return int((c:=n-x)*x+int(digits(c,12)[-2::-1]or'0',12) if nChai Wah Wu, Jun 14 2024

Formula

Sum_{n>=2} 1/a(n) = 3.4989489... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020

A029959 Numbers that are palindromic in base 14.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 197, 211, 225, 239, 253, 267, 281, 295, 309, 323, 337, 351, 365, 379, 394, 408, 422, 436, 450, 464, 478, 492, 506, 520, 534, 548, 562, 576, 591
Offset: 1

Views

Author

Keywords

Comments

Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 04 2020

Examples

			195 is DD in base 14.
196 is 100 in base 14, so it's not in the sequence.
197 is 101 in base 14.
		

Crossrefs

Palindromes in bases 2 through 13: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113, A029956, A029957, A029958.

Programs

  • Mathematica
    palQ[n_, b_:10] := Module[{idn = IntegerDigits[n, b]}, idn == Reverse[idn]]; Select[ Range[0, 600], palQ[#, 14] &] (* Harvey P. Dale, Aug 03 2014 *)
  • PARI
    isok(n) = Pol(d=digits(n, 14)) == Polrev(d); \\ Michel Marcus, Mar 12 2017
    
  • Python
    from sympy import integer_log
    from gmpy2 import digits
    def A029959(n):
        if n == 1: return 0
        y = 14*(x:=14**integer_log(n>>1,14)[0])
        return int((c:=n-x)*x+int(digits(c,14)[-2::-1]or'0',14) if nChai Wah Wu, Jun 14 2024

Formula

Sum_{n>=2} 1/a(n) = 3.6112482... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020

A029960 Numbers that are palindromic in base 15.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 226, 241, 256, 271, 286, 301, 316, 331, 346, 361, 376, 391, 406, 421, 436, 452, 467, 482, 497, 512, 527, 542, 557, 572, 587, 602, 617
Offset: 1

Views

Author

Keywords

Comments

Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 04 2020

Crossrefs

Programs

  • Mathematica
    f[n_,b_]:=Module[{i=IntegerDigits[n,b]},i==Reverse[i]];lst={};Do[If[f[n,15],AppendTo[lst,n]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
    Select[Range@ 620, PalindromeQ@ IntegerDigits[#, 15] &] (* Michael De Vlieger, May 13 2017, Version 10.3 *)
  • PARI
    isok(n) = my(d=digits(n, 15)); d == Vecrev(d); \\ Michel Marcus, May 14 2017
    
  • Python
    from sympy import integer_log
    from gmpy2 import digits
    def A029960(n):
        if n == 1: return 0
        y = 15*(x:=15**integer_log(n>>1,15)[0])
        return int((c:=n-x)*x+int(digits(c,15)[-2::-1]or'0',15) if nChai Wah Wu, Jun 14 2024

Formula

Sum_{n>=2} 1/a(n) = 3.66254285... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020

A249157 Palindromic in bases 11 and 13.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 84, 366, 510, 732, 876, 1020, 1098, 1242, 1464, 10248, 30252, 31110, 62220, 103704, 146541, 3382050, 3698730, 4391268, 225622530, 272466250, 413186676, 713998530, 801837204, 848770222, 912265732
Offset: 1

Views

Author

Ray Chandler, Oct 27 2014

Keywords

Comments

Intersection of A029956 and A029958.

Examples

			366 is a term since 366 = 303 base 11 and 366 = 222 base 13.
		

Crossrefs

Programs

  • Mathematica
    palQ[n_Integer,base_Integer]:=Block[{idn=IntegerDigits[n,base]},idn==Reverse[idn]];Select[Range[10^6]-1,palQ[#,11]&&palQ[#,13]&]
    Select[Range[0,44*10^5],AllTrue[IntegerDigits[#,{11,13}],PalindromeQ]&] (* The program generates the first 30 terms of the sequence. *) (* Harvey P. Dale, May 15 2025 *)
  • Python
    from gmpy2 import digits
    def palQ(n, b): # check if n is a palindrome in base b
        s = digits(n, b)
        return s == s[::-1]
    def palQgen(l, b): # unordered generator of palindromes in base b of length <= 2*l
        if l > 0:
            yield 0
            for x in range(1, b**l):
                s = digits(x, b)
                yield int(s+s[-2::-1], b)
                yield int(s+s[::-1], b)
    A249157_list = sorted([n for n in palQgen(6,11) if palQ(n,13)]) # Chai Wah Wu, Nov 25 2014

A297280 Numbers whose base-13 digits have equal down-variation and up-variation; see Comments.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 28, 42, 56, 70, 84, 98, 112, 126, 140, 154, 168, 170, 183, 196, 209, 222, 235, 248, 261, 274, 287, 300, 313, 326, 340, 353, 366, 379, 392, 405, 418, 431, 444, 457, 470, 483, 496, 510, 523, 536, 549, 562, 575, 588
Offset: 1

Views

Author

Clark Kimberling, Jan 17 2018

Keywords

Comments

Suppose that n has base-b digits b(m), b(m-1), ..., b(0). The base-b down-variation of n is the sum DV(n,b) of all d(i)-d(i-1) for which d(i) > d(i-1); the base-b up-variation of n is the sum UV(n,b) of all d(k-1)-d(k) for which d(k) < d(k-1). The total base-b variation of n is the sum TV(n,b) = DV(n,b) + UV(n,b). See the guide at A297330.
Differs after the zero from A029958 first for 2211 = 1011_13, which is not a palindrome in base 13 but has DV(2211,13) = UV(2211,13) =1. - R. J. Mathar, Jan 23 2018

Examples

			588 in base-13:  3,6,3, having DV = 3, UV = 3, so that 588 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    g[n_, b_] := Map[Total, GatherBy[Differences[IntegerDigits[n, b]], Sign]];
    x[n_, b_] := Select[g[n, b], # < 0 &]; y[n_, b_] := Select[g[n, b], # > 0 &];
    b = 13; z = 2000; p = Table[x[n, b], {n, 1, z}]; q = Table[y[n, b], {n, 1, z}];
    w = Sign[Flatten[p /. {} -> {0}] + Flatten[q /. {} -> {0}]];
    Take[Flatten[Position[w, -1]], 120]   (* A297279 *)
    Take[Flatten[Position[w, 0]], 120]    (* A297280 *)
    Take[Flatten[Position[w, 1]], 120]    (* A297281 *)

A046248 Cubes which are palindromes in base 13.

Original entry on oeis.org

0, 1, 8, 2744, 4913000, 6128487, 10618986392, 13481272000, 23300532400328, 23716588941891, 29138498659648, 51186306590680184, 52171080143896000, 63936660906500032, 112455476846227241000, 112609104493770863343
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

Intersection of A029958 and A000578.
Cf. A046247.

Programs

  • Mathematica
    Select[Range[0,5*10^6]^3,IntegerDigits[#,13]==Reverse[ IntegerDigits[ #,13]]&] (* Harvey P. Dale, Dec 10 2017 *)

Formula

a(n) = A046247(n)^3. - Andrew Howroyd, Aug 10 2024

Extensions

Offset corrected by Andrew Howroyd, Aug 10 2024

A043272 Sum of the digits of the n-th base 13 palindrome.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 8, 9, 10, 11, 12, 13, 14, 15
Offset: 1

Views

Author

Keywords

Crossrefs

A029958 (base 13 palindromes)

Programs

  • Mathematica
    Total[IntegerDigits[#,13]]&/@Select[Range[0,1000],IntegerDigits[#,13] == Reverse[ IntegerDigits[ #,13]]&] (* Harvey P. Dale, May 08 2020 *)
Showing 1-7 of 7 results.