cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030055 a(n) = binomial(2*n+1, n-5).

Original entry on oeis.org

1, 13, 105, 680, 3876, 20349, 100947, 480700, 2220075, 10015005, 44352165, 193536720, 834451800, 3562467300, 15084504396, 63432274896, 265182149218, 1103068603890, 4568648125690, 18851684897584
Offset: 5

Views

Author

Keywords

Crossrefs

Diagonal 12 of triangle A100257.
Cf. A001622.

Programs

  • GAP
    List([5..25],n->Binomial(2*n+1,n-5)); # Muniru A Asiru, Oct 24 2018
  • Magma
    [Binomial(2*n+1, n-5): n in [5..30]]; // G. C. Greubel, Oct 23 2018
    
  • Maple
    seq(binomial(2*n+1,n-5),n=5..25); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    Table[Binomial[2*n+1, n-5], {n, 5, 30}] (* G. C. Greubel, Oct 23 2018 *)
  • PARI
    vector(30, n, m=n+4; binomial(2*m+1,m-5)) \\ Michel Marcus, Aug 11 2015
    

Formula

G.f.: x^5*2048/((1-sqrt(1-4*x))^11*sqrt(1-4*x))+(-1/x^6+9/x^5-28/x^4+35/x^3-15/x^2+1/x). - Vladimir Kruchinin, Aug 11 2015
From Amiram Eldar, Jan 24 2022: (Start)
Sum_{n>=5} 1/a(n) = 9497/1260 - 32*Pi/(9*sqrt(3)).
Sum_{n>=5} (-1)^(n+1)/a(n) = 9392*log(phi)/(5*sqrt(5)) - 508169/1260, where phi is the golden ratio (A001622). (End)