cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030077 Take n equally spaced points on circle, connect them by a path with n-1 line segments; sequence gives number of distinct path lengths.

Original entry on oeis.org

1, 1, 1, 3, 5, 17, 28, 105, 161, 670, 1001, 2869, 6188, 26565, 14502, 167898, 245157, 445507, 1562275, 6055315, 2571120, 44247137, 64512240, 65610820, 362592230, 1850988412, 591652989, 11453679146, 17620076360, 1511122441, 114955808528, 511647729284, 67876359922, 3347789809236, 1882352047787, 1404030562068, 32308782859535
Offset: 1

Views

Author

Daniel Lurie Gittelson, Dec 11 1999

Keywords

Comments

For n points on a circle, there are floor(n/2) distinct line segment lengths. Hence an upper bound for a(n) is the number of compositions of n-1 into floor(n/2) nonnegative parts, which is A099578(n-2). Conjecture: the upper bound is attained if n is prime. There are A052558(n-2) paths to be considered. - T. D. Noe, Jan 09 2007 [Edited by Petros Hadjicostas, Jul 19 2018]

Examples

			For n=4 the 3 lengths are: 3 boundary edges (length 3), edge-diagonal-edge (2 + sqrt(2)) and diagonal-edge-diagonal (1 + 2*sqrt(2)).
For n=5, the 4 edges of the path may include 0,...,4 diagonals, so a(5)=5.
		

Crossrefs

Cf. A007874 (similar, but with n line segments), A052558, A099578.
See A352568 for the multisets of line lengths.

Extensions

a(13) - a(16) from T. D. Noe, Jan 09 2007
Removed unnecessary mention of dihedral group from definition. - N. J. A. Sloane, Apr 02 2022
The terms a(1) to a(15) have been verified by Sean A. Irvine and a(1) to a(16) by Brendan McKay. - N. J. A. Sloane, Apr 02 2022
a(17) to a(37) from Brendan McKay, May 14 2022