A052558
a(n) = n! *((-1)^n + 2*n + 3)/4.
Original entry on oeis.org
1, 1, 4, 12, 72, 360, 2880, 20160, 201600, 1814400, 21772800, 239500800, 3353011200, 43589145600, 697426329600, 10461394944000, 188305108992000, 3201186852864000, 64023737057280000, 1216451004088320000, 26761922089943040000, 562000363888803840000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
List([0..30], n-> ((-1)^n +2*n +3)*Factorial(n)/4); # G. C. Greubel, May 07 2019
-
[((-1)^n +2*n +3)*Factorial(n)/4: n in [0..30]]; // G. C. Greubel, May 07 2019
-
spec := [S,{S=Prod(Sequence(Z),Sequence(Prod(Z,Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Table[n!((-1)^n+2n+3)/4,{n,0,30}] (* Harvey P. Dale, Aug 16 2014 *)
-
a(n)=if(n<0,0,(1+n\2)*n!)
-
a(n)=if(n<0, 0, n!*polcoeff(1/(1-x)/(1-x^2)+x*O(x^n), n))
-
[((-1)^n +2*n +3)*factorial(n)/4 for n in (0..30)] # G. C. Greubel, May 07 2019
A099578
a(n) = binomial(floor((3n+2)/2), floor(n/2)).
Original entry on oeis.org
1, 1, 4, 5, 21, 28, 120, 165, 715, 1001, 4368, 6188, 27132, 38760, 170544, 245157, 1081575, 1562275, 6906900, 10015005, 44352165, 64512240, 286097760, 417225900, 1852482996, 2707475148, 12033222880, 17620076360, 78378960360, 114955808528
Offset: 0
From _Petros Hadjicostas_, Jul 19 2018: (Start)
With n=2 there are a(2-2) = a(0) = 1 compositions of 2-1 = 1 into floor(2/2) = 1 nonnegative parts, namely 1 (only).
With n=3 there are a(3-2) = a(1) = 1 compositions of 3-1 = 2 into floor(3/2) = 1 nonnegative parts, namely 2 (only).
With n=4 there are a(4-2) = a(2) = 4 compositions of 4-1 = 3 into floor(4/2) = 2 nonnegative parts, namely 0+3, 3+0, 1+2, and 2+1.
With n=5 there are a(5-2) = a(3) = 5 compositions of 5-1 = 4 into floor(5/2) = 2 nonnegative parts, namely 0+4, 4+0, 1+3, 3+1, and 2+2.
With n=6 there are a(6-2) = a(4) = 21 compositions of 6-1 = 5 into floor(6/2) = 3 nonnegative parts, namely the 3 permutations of 1+1+3, the 3 permutations of 1+2+2, the 3 permutations of 0+0+5, the 6 permutations of 0+1+4, and the 6 permutations of 0+2+3.
(End)
-
[(&+[Binomial(n+j, j): j in [0..Floor(n/2)]]): n in [0..40]]; // G. C. Greubel, Jul 24 2022
-
A099578:=n->binomial(floor((3*n+2)/2), floor(n/2)); seq(A099578(k), k=0..50); # Wesley Ivan Hurt, Nov 01 2013
-
Table[Binomial[Floor[(3n+2)/2], Floor[n/2]], {n, 0, 50}] (* Wesley Ivan Hurt, Nov 01 2013 *)
CoefficientList[Series[-((Sqrt[4 -27 x^2] -2(Cos[1/3 ArcSin[(3 Sqrt[3] x)/2]] + Sqrt[3] Sin[2/3 ArcSin[(3 Sqrt[3] x)/2]]))/(3 x Sqrt[4 -27 x^2])), {x, 0, 20}], x] (* Benedict W. J. Irwin, Aug 15 2016 *)
a[n_] := Binomial[2*n+1, n]*Hypergeometric2F1[-n, n+1, -2*n-1, -1]; Flatten[Table[a[n], {n, 0, 29}]] (* Detlef Meya, Dec 25 2023 *)
-
a(n) = binomial((3*n+2)\2, n\2); \\ Michel Marcus, Nov 02 2013
-
[binomial((3*n+2)//2, n//2) for n in (0..40)] # G. C. Greubel, Jul 24 2022
A007874
Distinct perimeter lengths of polygons with regularly spaced vertices.
Original entry on oeis.org
1, 1, 1, 2, 4, 10, 24, 63, 177, 428, 1230, 2556, 8202, 18506, 18162, 119069
Offset: 1
Peter H. Borcherds (p.h.borcherds(AT)bham.ac.uk)
Consider n=4. Label the points on the circle A,B,C and D. Suppose that AB has unit length. Then a(4)=2 because the two 4-gons are ABCDA and ACBDA, with perimeters 4 and 2+2*sqrt(2), respectively.
A352568
Take n equally spaced points on circle, connect them by a path with n-1 line segments; sequence gives number of distinct multisets of segment lengths.
Original entry on oeis.org
1, 1, 1, 3, 5, 17, 28, 105, 161, 670, 1001, 4129, 6188, 26565, 38591, 167898, 245157, 1072730, 1562275, 6871780, 10011302, 44247137, 64512240, 285599304, 417219530, 1850988412, 2707392498, 12026818454, 17620076360, 78356395953, 114955808528, 511647729284, 751614362180, 3347789809236, 4923688862065, 21944254861680, 32308782859535
Offset: 1
For n = 4 there are two possible edge lengths, the side and the diagonal of the square. For a path with three line segments, we can have 3 sides, 2 sides and one diagonal, or 2 diagonals and one side. So a(4) = 3.
- Brendan McKay, Posting to Sequence Fans Mailing List, April 02 2022.
- Samuel C. Gutekunst, Circulant TSP: Vertices of the Edge-Length Polytope and Superpolynomial Lower Bounds, arXiv:2506.10758 [cs.DM], 2025. See pp. 2-3, 6, 17-18.
- P. Horak and A. Rosa, On a problem of Marco Burrati, Electronic J. Combinatorics, 16 (2009) R20.
- Brendan D. McKay and Tim Peters, Paths through equally spaced points on a circle, arXiv:2205.06004 [math.CO], 2022.
- A. Pasotti and M. A. Pellegrini, On the Buratti-Horak-Rosa conjecture about Hamiltonian paths in complete graphs, Electronic J. Combinatorics, 21 (2014) P2.30.
Showing 1-4 of 4 results.
Comments