cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A030077 Take n equally spaced points on circle, connect them by a path with n-1 line segments; sequence gives number of distinct path lengths.

Original entry on oeis.org

1, 1, 1, 3, 5, 17, 28, 105, 161, 670, 1001, 2869, 6188, 26565, 14502, 167898, 245157, 445507, 1562275, 6055315, 2571120, 44247137, 64512240, 65610820, 362592230, 1850988412, 591652989, 11453679146, 17620076360, 1511122441, 114955808528, 511647729284, 67876359922, 3347789809236, 1882352047787, 1404030562068, 32308782859535
Offset: 1

Views

Author

Daniel Lurie Gittelson, Dec 11 1999

Keywords

Comments

For n points on a circle, there are floor(n/2) distinct line segment lengths. Hence an upper bound for a(n) is the number of compositions of n-1 into floor(n/2) nonnegative parts, which is A099578(n-2). Conjecture: the upper bound is attained if n is prime. There are A052558(n-2) paths to be considered. - T. D. Noe, Jan 09 2007 [Edited by Petros Hadjicostas, Jul 19 2018]

Examples

			For n=4 the 3 lengths are: 3 boundary edges (length 3), edge-diagonal-edge (2 + sqrt(2)) and diagonal-edge-diagonal (1 + 2*sqrt(2)).
For n=5, the 4 edges of the path may include 0,...,4 diagonals, so a(5)=5.
		

Crossrefs

Cf. A007874 (similar, but with n line segments), A052558, A099578.
See A352568 for the multisets of line lengths.

Extensions

a(13) - a(16) from T. D. Noe, Jan 09 2007
Removed unnecessary mention of dihedral group from definition. - N. J. A. Sloane, Apr 02 2022
The terms a(1) to a(15) have been verified by Sean A. Irvine and a(1) to a(16) by Brendan McKay. - N. J. A. Sloane, Apr 02 2022
a(17) to a(37) from Brendan McKay, May 14 2022

A099575 Number triangle T(n,k) = binomial(n + floor(k/2) + 1, n + 1), 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 6, 6, 21, 1, 1, 7, 7, 28, 28, 1, 1, 8, 8, 36, 36, 120, 1, 1, 9, 9, 45, 45, 165, 165, 1, 1, 10, 10, 55, 55, 220, 220, 715, 1, 1, 11, 11, 66, 66, 286, 286, 1001, 1001, 1, 1, 12, 12, 78, 78, 364, 364, 1365, 1365, 4368, 1, 1, 13, 13, 91, 91, 455, 455, 1820, 1820, 6188, 6188
Offset: 0

Views

Author

Paul Barry, Oct 23 2004

Keywords

Comments

Original name was: "Number triangle T(n,k) = if(k<=n, Sum_{j=0..floor(k/2)} binomial(n+j,j), 0)."

Examples

			Rows start:
  1;
  1, 1;
  1, 1,  4;
  1, 1,  5,  5;
  1, 1,  6,  6, 21;
  1, 1,  7,  7, 28, 28;
  1, 1,  8,  8, 36, 36, 120;
  1, 1,  9,  9, 45, 45, 165, 165;
  1, 1, 10, 10, 55, 55, 220, 220, 715;
		

Crossrefs

Cf. A099573, A099576 (row sums), A099577 (diagonal sums), A099578 (main diagonal).

Programs

  • Magma
    [Binomial(n+1+Floor(k/2), n+1): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 24 2022
    
  • Maple
    for n from 0 to 20 do seq(binomial(n+floor(k/2)+1,n+1),k=0..n) od; # Robert Israel, May 08 2018
  • Mathematica
    Table[Binomial[n+Floor[k/2]+1, n+1], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 24 2022 *)
  • SageMath
    flatten([[binomial(n+(k//2)+1, n+1) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 24 2022

Formula

T(n, k) = binomial(n + floor(k/2) + 1, n + 1).
T(n, n) = A099578(n).
Sum_{k=0..n} T(n, k) = A099576(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A099577(n).

Extensions

Definition simplified by Robert Israel, May 08 2018

A127040 a(n) = binomial(floor((3n+4)/2),floor(n/2)).

Original entry on oeis.org

1, 1, 5, 6, 28, 36, 165, 220, 1001, 1365, 6188, 8568, 38760, 54264, 245157, 346104, 1562275, 2220075, 10015005, 14307150, 64512240, 92561040, 417225900, 600805296, 2707475148, 3910797436, 17620076360, 25518731280, 114955808528
Offset: 0

Views

Author

T. D. Noe, Jan 03 2007

Keywords

Comments

With offset 2, the number of compositions of n into floor(n/2) parts, which is an upper bound for A007874.

Crossrefs

Cf. A004319 (bisection), A025174 (bisection), A099578.

Programs

  • Maple
    seq(sum(binomial(n+k, k-1), k=0..ceil((n+1)/2)), n=0..28); # Zerinvary Lajos, Apr 11 2007
  • Mathematica
    CoefficientList[Series[(-1 + (2 Cos[1/3 ArcSin[(3 Sqrt[3] x)/2]])/Sqrt[4 - 27 x^2] + 3 x^3 Hypergeometric2F1[4/3, 5/3, 5/2, (27 x^2)/4])/(3 x^2), {x, 0, 20}], x] (* Benedict W. J. Irwin, Aug 16 2016 *)
    Table[Binomial[Floor[(3 n + 4)/2], Floor[n/2]], {n, 0, 28}] (* Michael De Vlieger, Aug 18 2016 *)
  • PARI
    a(n) = binomial((3*n+4)\2, n\2); \\ Michel Marcus, Sep 09 2016

Formula

From Benedict W. J. Irwin, Aug 16 2016: (Start)
G.f.: (-1 + (2*cos(arcsin(3*sqrt(3)*x/2)/3))/sqrt(4-27*x^2) + 3*x^3*2F1(4/3,5/3;5/2;27*x^2/4))/(3*x^2).
E.g.f.: 2F3(4/3,5/3;1/2,3/2,2;27*x^2/16) + x*2F3(4/3,5/3;1,3/2,5/2;27*x^2/16).
(End)
D-finite with recurrence 8*(n+2)*(n+1)*a(n) -84*(n-1)*(n+1)*a(n-1) +6*(-33*n^2+54*n-8)*a(n-2) +9*(63*n^2-63*n-16)*a(n-3) +108*(3*n-5)*(3*n-7)*a(n-4)=0. - R. J. Mathar, Feb 08 2021
Showing 1-3 of 3 results.