cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030098 Squares whose digits are all even.

Original entry on oeis.org

0, 4, 64, 400, 484, 4624, 6084, 6400, 8464, 26244, 28224, 40000, 40804, 48400, 68644, 88804, 228484, 242064, 248004, 446224, 462400, 608400, 640000, 806404, 824464, 846400, 868624, 2022084, 2226064, 2244004, 2624400, 2822400, 2862864, 4000000, 4008004, 4080400
Offset: 1

Views

Author

Keywords

Comments

On the other hand, the only squares whose digits are all odd are 1 and 9, because the tens digit of all odd squares >= 25 (A016754) is always even. - Bernard Schott, Jan 24 2023

Crossrefs

Subsequence of A075787.

Programs

  • Mathematica
    t = {}; n = -1; While[Length[t] < 1000, n++; If[Intersection[IntegerDigits[n^2], {1, 3, 5, 7, 9}] == {}, AppendTo[t, n^2]]] (* T. D. Noe, Apr 03 2014 *)
    Select[Range[0,3000]^2,AllTrue[IntegerDigits[#],EvenQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 19 2016 *)
  • Python
    from math import isqrt
    def ok(sq): return all(d in "02468" for d in str(sq))
    def aupto(limit):
      sqs = (i*i for i in range(0, isqrt(limit)+1, 2))
      return list(filter(ok, sqs))
    print(aupto(4080400)) # Michael S. Branicky, May 20 2021

Formula

a(n) = A030097(n)^2. - Michel Marcus, Apr 03 2014