cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030119 a(n) = a(n-1) + a(n-2) + n, a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 4, 8, 16, 29, 51, 87, 146, 242, 398, 651, 1061, 1725, 2800, 4540, 7356, 11913, 19287, 31219, 50526, 81766, 132314, 214103, 346441, 560569, 907036, 1467632, 2374696, 3842357, 6217083, 10059471, 16276586, 26336090, 42612710, 68948835, 111561581
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([0..40], n-> F(n+3)+2*F(n+1)-n-3); # G. C. Greubel, Jul 24 2019
  • Magma
    [Lucas(n+2) + Fibonacci(n+1) - (n+3) : n in [0..40]]; // Vincenzo Librandi, Nov 16 2011
    
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==1,a[n]==a[n-1]+a[n-2]+n},a,{n,40}] (* or *) LinearRecurrence[{3,-2,-1,1},{1,1,4,8},40] (* Harvey P. Dale, Nov 06 2011 *)
  • PARI
    Vec((1-2*x+3*x^2-x^3)/((1-x-x^2)*(1-x)^2) + O(x^40)) \\ Colin Barker, Mar 11 2017
    
  • PARI
    vector(40, n, n--; f=fibonacci; f(n+3)+2*f(n+1)-n-3) \\ G. C. Greubel, Jul 24 2019
    
  • Sage
    f=fibonacci; [f(n+3)+2*f(n+1)-n-3 for n in (0..40)] # G. C. Greubel, Jul 24 2019
    

Formula

Periodic mod 6.
G.f.: (1 - 2*x + 3*x^2 - x^3) / ((1 - x - x^2)*(1-x)^2).
a(n) = Lucas(n+2) + Fibonacci(n+1) - (n+3).
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4); a(0)=1, a(1)=1, a(2)=4, a(3)=8. - Harvey P. Dale, Nov 06 2011
a(n) = -3 + (2^(-n)*((1-sqrt(5))^n*(-3+2*sqrt(5)) + (1+sqrt(5))^n*(3+2*sqrt(5)))) / sqrt(5) - n. - Colin Barker, Mar 11 2017

Extensions

Description corrected and sequence extended by Erich Friedman