cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030154 Squares such that in n and sqrt(n) the parity of digits alternates.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 81, 256, 529, 729, 1296, 4761, 5476, 6561, 9216, 16129, 32761, 34969, 87616, 763876, 5414929, 5612161, 7414729, 7436529, 7634169, 14561856, 21058921, 34503876, 43072969, 43414921, 45252529, 69272329
Offset: 1

Views

Author

Keywords

Comments

The more digits there are in n, the lower the likelihood that the parity of n's digits will strictly alternate. Thus, the terms of the sequence become increasingly rare as n gets larger. - Harvey P. Dale, Aug 05 2018
For n > 3 the last digit of a(n) isn't 0 or 4. - David A. Corneth, Aug 05 2018

Crossrefs

Programs

  • Mathematica
    pdaQ[n_]:=Module[{a=Mod[IntegerDigits[n],2],b=Mod[IntegerDigits[ Sqrt[ n]],2]},Length[ Split[a]] ==IntegerLength[n]&&Length[Split[b]]== IntegerLength[ Sqrt[n]]]; Join[{0},Select[Range[8500]^2,pdaQ]] (* Harvey P. Dale, Aug 05 2018 *)
  • PARI
    alternating(n)={my(v=digits(n)%2);0==#select(i->v[i]==v[i-1],[2..#v])}
    { for(n=0, 10^5, if(alternating(n^2) && alternating(n), print1(n^2, ", "))) } \\ Andrew Howroyd, Aug 05 2018
    
  • PARI
    \\ for larger n: requires alternating function above
    upto(n)={local(R=List([0])); my(recurse(s,b)=if(b0&&alternating(k^2\b), listput(R, k)); self()(k, 10*b)))))); recurse(0,1); listsort(R); Vec(R)}
    apply(n->n^2, upto(sqrtint(10^12))) \\ Andrew Howroyd, Aug 05 2018

Extensions

Offset changed by David A. Corneth, Aug 05 2018