A030154 Squares such that in n and sqrt(n) the parity of digits alternates.
0, 1, 4, 9, 16, 25, 36, 49, 81, 256, 529, 729, 1296, 4761, 5476, 6561, 9216, 16129, 32761, 34969, 87616, 763876, 5414929, 5612161, 7414729, 7436529, 7634169, 14561856, 21058921, 34503876, 43072969, 43414921, 45252529, 69272329
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1226 (first 101 terms from Harvey P. Dale, terms 102..223 from David A. Corneth)
Programs
-
Mathematica
pdaQ[n_]:=Module[{a=Mod[IntegerDigits[n],2],b=Mod[IntegerDigits[ Sqrt[ n]],2]},Length[ Split[a]] ==IntegerLength[n]&&Length[Split[b]]== IntegerLength[ Sqrt[n]]]; Join[{0},Select[Range[8500]^2,pdaQ]] (* Harvey P. Dale, Aug 05 2018 *)
-
PARI
alternating(n)={my(v=digits(n)%2);0==#select(i->v[i]==v[i-1],[2..#v])} { for(n=0, 10^5, if(alternating(n^2) && alternating(n), print1(n^2, ", "))) } \\ Andrew Howroyd, Aug 05 2018
-
PARI
\\ for larger n: requires alternating function above upto(n)={local(R=List([0])); my(recurse(s,b)=if(b
0&&alternating(k^2\b), listput(R, k)); self()(k, 10*b)))))); recurse(0,1); listsort(R); Vec(R)} apply(n->n^2, upto(sqrtint(10^12))) \\ Andrew Howroyd, Aug 05 2018
Extensions
Offset changed by David A. Corneth, Aug 05 2018
Comments