A030180 a(n) = (n^7 - n)/42.
0, 0, 3, 52, 390, 1860, 6665, 19608, 49932, 113880, 238095, 463980, 853138, 1494012, 2509845, 4068080, 6391320, 9769968, 14576667, 21282660, 30476190, 42883060, 59389473, 81067272, 109201700, 145321800, 191233575, 249056028, 321260202, 410711340, 520714285
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Crossrefs
Cf. A133499 (n^7-n).
Programs
-
GAP
List([0..35], n-> (n^7-n)/42); # G. C. Greubel, Dec 28 2019
-
Magma
[(n^7-n)/42: n in [0..35]]; // G. C. Greubel, Dec 28 2019
-
Maple
seq( (n^7-n)/42, n=0..35); # G. C. Greubel, Dec 28 2019
-
Mathematica
Table[(n^7-n)/42, {n,0,35}] (* G. C. Greubel, Dec 28 2019 *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{0,0,3,52,390,1860,6665,19608},40] (* Harvey P. Dale, May 14 2022 *)
-
PARI
a(n) = (n^7-n)/42; \\ Michel Marcus, Aug 30 2013
-
Sage
[(n^7-n)/42 for n in (0..35)] # G. C. Greubel, Dec 28 2019
Formula
a(n) = A133499(n)/42. - Michel Marcus, Aug 30 2013
From Stefano Spezia, Dec 29 2019: (Start)
O.g.f.: x^2*(3 + 28*x + 58*x^2 + 28*x^3 + 3*x^4)/(1 - x)^8.
E.g.f.: (1/42)*exp(x)*x^2*(63 + 301*x + 350*x^2 + 140*x^3 + 21*x^4 + x^5).
(End)