A030195 a(n) = 3*a(n-1) + 3*a(n-2), a(0)=0, a(1)=1.
0, 1, 3, 12, 45, 171, 648, 2457, 9315, 35316, 133893, 507627, 1924560, 7296561, 27663363, 104879772, 397629405, 1507527531, 5715470808, 21668995017, 82153397475, 311467177476, 1180861724853, 4476986706987, 16973545295520
Offset: 0
Examples
G.f. = x + 3*x^2 + 12*x^3 + 45*x^4 + 171*x^5 + 648*x^6 + 2457*x^7 + ...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=q=3.
- Tanya Khovanova, Recursive Sequences
- W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs. (39), (41) and (45), rhs, m=3.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (3,3).
Crossrefs
Programs
-
Haskell
a030195 n = a030195_list !! n a030195_list = 0 : 1 : map (* 3) (zipWith (+) a030195_list (tail a030195_list)) -- Reinhard Zumkeller, Oct 14 2011
-
Magma
I:=[0,1]; [n le 2 select I[n] else 3*Self(n-1) + 3*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018
-
Mathematica
CoefficientList[Series[1/(1-3x-3x^2), {x, 0, 25}], x] (* Zerinvary Lajos, Mar 22 2007 *) LinearRecurrence[{3, 3}, {0, 1}, 24] (* Or *) RecurrenceTable[{a[n] == 3 a[n - 1] + 3 a[n - 2], a[0] == 0, a[1] == 1}, a, {n, 0, 23}] (* Robert G. Wilson v, Aug 18 2012 *)
-
PARI
{a(n) = n--; polchebyshev(n, 2, I*sqrt(3)/2) * (-I*sqrt(3))^n};
-
Sage
[lucas_number1(n,3,-3) for n in range(0, 25)] # Zerinvary Lajos, Apr 22 2009
Formula
a(n+1) = (-I*sqrt(3))^n*U(n, I*sqrt(3)/2).
G.f.: x / (1 - 3*x - 3*x^2).
a(n+1) = Sum_{k=0..floor(n/2)} 3^(n-k)*binomial(n-k, k). - Emeric Deutsch, Nov 14 2001
a(n) = (p^n - q^n)/sqrt(21); p = (3 + sqrt 21)/2, q = (3 - sqrt 21)/2. - Gary W. Adamson, Jul 02 2003
For n > 0, a(n) = Sum_{k=0..n-1} (2^k)*A063967(n-1,k). - Gerald McGarvey, Jul 23 2006
a(n+1) = Sum_{k=0..n} 2^k*A063967(n,k). - Philippe Deléham, Nov 03 2006
Extensions
Edited by Ralf Stephan, Aug 02 2004
I simplified the definition. As a result the offsets in some of the formulas may need to shifted by 1. - N. J. A. Sloane, Apr 01 2006
Formulas shifted to match offset. - Charles R Greathouse IV, Jan 31 2011
Comments