A000577
Number of triangular polyominoes (or triangular polyforms, or polyiamonds) with n cells (turning over is allowed, holes are allowed, must be connected along edges).
Original entry on oeis.org
1, 1, 1, 3, 4, 12, 24, 66, 160, 448, 1186, 3334, 9235, 26166, 73983, 211297, 604107, 1736328, 5000593, 14448984, 41835738, 121419260, 353045291, 1028452717, 3000800627, 8769216722, 25661961898, 75195166667, 220605519559, 647943626796, 1905104762320, 5607039506627, 16517895669575
Offset: 1
- F. Harary, Graphical enumeration problems; in Graph Theory and Theoretical Physics, ed. F. Harary, Academic Press, London, 1967, pp. 1-41.
- W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
- Ed Pegg, Jr., Polyform puzzles, in Tribute to a Mathemagician, Peters, 2005, pp. 119-125.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. J. Torbijn, Polyiamonds, J. Rec. Math., 2 (1969), 216-227.
- John Mason, Table of n, a(n) for n = 1..52
- Ed Pegg, Jr., Illustrations of polyforms
- A. Clarke, Polyiamonds
- S. T. Coffin, The Puzzling World of Polyhedral Dissections, Chap 2, Table 1.
- R. K. Guy, O'Beirne's Hexiamond, in The Mathemagician and the Pied Puzzler - A Collection in Tribute to Martin Gardner, Ed. E. R. Berlekamp and T. Rogers, A. K. Peters, 1999, 85-96 [broken link?]
- J. and J. Hindriks, Dutchman Designs: Quilting Patterns [broken link?]
- Kadon Enterprises, The 66 polyominoes of order 8 (from a puzzle)
- Kadon Enterprises, Home page
- M. Keller, Counting polyforms.
- N. Madras, A pattern theorem for lattice clusters, arXiv:math/9902161 [math.PR], 1999; Annals of Combinatorics, 3 (1999), 357-384.
- Greg Malen, Érika Roldán, and Rosemberg Toalá-Enríquez, Extremal {p, q}-Animals, Ann. Comb. (2023), p. 3.
- John Mason, Counting Polyiamonds
- R. J. Mathar, Illustrations for up to 9-iamonds
- Jaime Rangel-Mondragon, Polyominoes and Related Families, The Mathematica Journal, 9:3 (2005), 609-640.
- Eric Weisstein's World of Mathematics, Polyiamond
a(20), a(21), a(22), a(23) and a(24) from Brendan Owen (brendan_owen(AT)yahoo.com), Jan 01 2002
A001420
Number of fixed 2-dimensional triangular-celled animals with n cells (n-iamonds, polyiamonds) in the 2-dimensional hexagonal lattice.
Original entry on oeis.org
2, 3, 6, 14, 36, 94, 250, 675, 1838, 5053, 14016, 39169, 110194, 311751, 886160, 2529260, 7244862, 20818498, 59994514, 173338962, 501994070, 1456891547, 4236446214, 12341035217, 36009329450, 105229462401, 307942754342, 902338712971, 2647263986022, 7775314024683, 22861250676074, 67284446545605
Offset: 1
- W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vaclav Kotesovec, Table of n, a(n) for n = 1..75 (from reference by A. J. Guttmann)
- G. Aleksandrowicz and G. Barequet, counting d-dimensional polycubes and nonrectangular planar polyomnoes, Lect. Not. Comp. Sci 4112 (2006) 418-427 Table 3
- G. Aleksandrowicz and G. Barequet, Counting d-dimensional polycubes and nonrectangular planar polyominoes, Int. J. of Computational Geometry and Applications, 19 (2009), 215-229.
- Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016.
- Gill Barequet and Mirah Shalah, Improved Bounds on the Growth Constant of Polyiamonds, 32nd European Workshop on Computational Geometry, 2016.
- Gill Barequet, Mira Shalah, and Yufei Zheng, An Improved Lower Bound on the Growth Constant of Polyiamonds, In: Cao Y., Chen J. (eds) Computing and Combinatorics, COCOON 2017, Lecture Notes in Computer Science, vol 10392.
- Vuong Bui, The number of polyiamonds is almost supermultiplicative, arXiv:2304.10077 [math.CO], 2023.
- A. J. Guttmann (ed.), Polygons, Polyominoes and Polycubes, Lecture Notes in Physics, 775 (2009). (Table 16.11, p. 479 has 75 terms of this sequence.)
- Greg Malen, Érika Roldán, and Rosemberg Toalá-Enríquez, Extremal {p, q}-Animals, Ann. Comb. (2023), p. 3.
- G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
- H. Redelmeier, Emails to N. J. A. Sloane, 1991
More terms from Brendan Owen (brendan_owen(AT)yahoo.com), Dec 15 2001
a(29)-a(31) from the Aleksandrowicz and Barequet paper (
N. J. A. Sloane, Jul 09 2009)
A030223
Number of achiral triangular n-ominoes (n-iamonds) (holes are allowed).
Original entry on oeis.org
1, 1, 1, 2, 2, 5, 5, 12, 13, 30, 36, 80, 97, 213, 266, 578, 737, 1589, 2051, 4408, 5747, 12333, 16213, 34737, 45979, 98367, 131007, 279902, 374781, 799732, 1075793, 2293193, 3097415, 6596787, 8942350, 19031088, 25880367, 55043561, 75068945, 159570624, 218189681
Offset: 1
A006534
Number of one-sided triangular polyominoes (n-iamonds) with n cells; turning over not allowed, holes are allowed.
Original entry on oeis.org
1, 1, 1, 4, 6, 19, 43, 120, 307, 866, 2336, 6588, 18373, 52119, 147700, 422016, 1207477, 3471067, 9999135, 28893560, 83665729, 242826187, 706074369, 2056870697, 6001555275, 17538335077, 51323792789, 150390053432, 441210664337, 1295886453860, 3810208448847, 11214076720061, 33035788241735
Offset: 1
From _M. F. Hasler_, Nov 12 2017: (Start)
Putting dots for the approximate center of the regular triangles (alternatively flipped up and down for neighboring dots), we have:
a(4) = #{ .... , .:. , ..: , :.. } = 4, while ..: and :.. are considered equivalent and not counted twice in A000577(4) = 3.
a(5) = #{ ..... , ...: , :... , ..:. , .:.. , :.: } = 6, and again the 2nd & 3rd and 4th & 5th are considered equivalent and not counted twice in A000577(5) = 4. (End)
- F. Harary, Graphical enumeration problems; in Graph Theory and Theoretical Physics, ed. F. Harary, Academic Press, London, 1967, pp. 1-41.
- W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. J. Torbijn, Polyiamonds, J. Rec. Math. 2 (1969), 216-227.
- John Mason, Table of n, a(n) for n = 1..52
- R. K. Guy, O'Beirne's Hexiamond, in The Mathemagician and the Pied Puzzler - A Collection in Tribute to Martin Gardner, Ed. E. R. Berlekamp and T. Rogers, A. K. Peters, 1999, 85-96.
- J. Meeus & N. J. A. Sloane, Correspondence, 1974-1975
- Ed Pegg, Jr., Illustrations of polyforms
- Eric Weisstein's World of Mathematics, Polyiamond.
A364684
Number of achiral triangular polyominoes with 6n cells and sixfold rotational symmetry.
Original entry on oeis.org
1, 1, 1, 1, 3, 4, 7, 9, 16, 22, 46, 63, 121, 167, 455, 912, 1263, 2535, 3514, 7099, 9873, 20043, 27956, 56807, 79397, 161736, 226559, 462482, 649100, 1327165, 1865833, 3820605, 5379507, 11028753, 15550459, 31913892, 45057416, 92557088, 130837407, 268988726
Offset: 1
________ ________
/\ /\ /\ /\ /\ /\ /\
____ ____/__\____ /__\/__\/__\ /__\/__\/__\
/\ /\ \ /\ /\ / /\ / \ /\ /\ /\ /\ /\
/__\/__\ \/__\/__\/ /__\/ \/__\ /__\/__\/__\/__\
\ /\ / /\ /\ /\ \ /\ /\ / \ /\ /\ /\ /
\/__\/ /__\/__\/__\ \/__\____/__\/ \/__\/__\/__\/
\ / \ /\ /\ / \ /\ /\ /
\/ \/__\/__\/ \/__\/__\/
Showing 1-5 of 5 results.
Comments