cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 70 results. Next

A057729 Number of triangular polyominoes (or polyiamonds) [A000577] with perimeter n.

Original entry on oeis.org

0, 0, 1, 1, 1, 4, 5, 16, 37, 120, 345, 1181, 3844, 13429, 46736, 167172
Offset: 1

Views

Author

N. J. A. Sloane, Oct 29 2000

Keywords

References

  • a(10) found by Brendan Owen.

Crossrefs

Extensions

Link updated by William Rex Marshall, Dec 16 2009
a(11)-a(12) from Luca Petrone, Apr 04 2017
a(12)-a(16) corrected and extended by John Mason, Jul 26 2021

A000105 Number of free polyominoes (or square animals) with n cells.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17073, 63600, 238591, 901971, 3426576, 13079255, 50107909, 192622052, 742624232, 2870671950, 11123060678, 43191857688, 168047007728, 654999700403, 2557227044764, 9999088822075, 39153010938487, 153511100594603
Offset: 0

Views

Author

Keywords

Comments

For n>0, a(n) + A030228(n) = A000988(n) because the number of free polyominoes plus the number of polyominoes lacking bilateral symmetry equals the number of one-sided polyominoes. - Graeme McRae, Jan 05 2006
The possible symmetry groups of a (nonempty) polyomino are the 10 subgroups of the dihedral group D_8 of order 8: D_8, 1, Z_2 (five times), Z_4, (Z_2)^2 (twice). - Benoit Jubin, Dec 30 2008
Names for first few polyominoes: monomino, domino, tromino, tetromino, pentomino, hexomino, heptomino, octomino, enneomino, decomino, hendecomino, dodecomino, ...
Limit_{n->oo} a(n)^(1/n) = mu with 3.98 < mu < 4.64 (quoted by Castiglione et al., with a reference to Barequet et al., 2006, for the lower bound). The upper bound is due to Klarner and Rivest, 1973. By Madras, 1999, it is now known that this limit, also known as Klarner's constant, is equal to the limit growth rate lim_{n->oo} a(n+1)/a(n).
Polyominoes are worth exploring in the elementary school classroom. Students in grade 2 can reproduce the first 6 terms. Grade 3 students can explore area and perimeter. Grade 4 students can talk about polyomino symmetries.
The pentominoes should be singled out for special attention: 1) they offer a nice, manageable set that a teacher can commercially acquire without too much expense. 2) There are also deeply strategic games and perplexing puzzles that are great for all students. 3) A fraction of students will become engaged because of the beautiful solutions.
Conjecture: Almost all polyominoes are holey. In other words, A000104(n)/a(n) tends to 0 for increasing n. - John Mason, Dec 11 2021 (This is true, a consequence of Madras's 1999 pattern theorem. - Johann Peters, Jan 06 2024)

Examples

			a(0) = 1 as there is 1 empty polyomino with #cells = 0. - _Fred Lunnon_, Jun 24 2020
		

References

  • S. W. Golomb, Polyominoes, Appendix D, p. 152; Princeton Univ. Pr. NJ 1994
  • J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 229.
  • D. A. Klarner, The Mathematical Gardner, p. 252 Wadsworth Int. CA 1981
  • W. F. Lunnon, Counting polyominoes, pp. 347-372 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
  • W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
  • George E. Martin, Polyominoes - A Guide to Puzzles and Problems in Tiling, The Mathematical Association of America, 1996
  • Ed Pegg, Jr., Polyform puzzles, in Tribute to a Mathemagician, Peters, 2005, pp. 119-125.
  • R. C. Read, Some applications of computers in graph theory, in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978, pp. 417-444.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences classifying polyominoes by symmetry group: A006746, A006747, A006748, A006749, A056877, A056878, A142886, A144553, A144554.
Cf. A001168 (not reduced by D_8 symmetry), A000104 (no holes), A054359, A054360, A001419, A000988, A030228 (chiral polyominoes).
See A006765 for another version.
Cf. also A000577, A000228, A103465, A210996 (bisection).
Excluding a(0), 8th and 9th row of A366766.

Programs

  • Mathematica
    (* In this program by Jaime Rangel-Mondragón, polyominoes are represented as a list of Gaussian integers. *)
    polyominoQ[p_List] := And @@ ((IntegerQ[Re[#]] && IntegerQ[Im[#]])& /@ p);
    rot[p_?polyominoQ] := I*p;
    ref[p_?polyominoQ] := (# - 2 Re[#])& /@ p;
    cyclic[p_] := Module[{i = p, ans = {p}}, While[(i = rot[i]) != p, AppendTo[ans, i]]; ans];
    dihedral[p_?polyominoQ] := Flatten[{#, ref[#]}& /@ cyclic[p], 1];
    canonical[p_?polyominoQ] := Union[(# - (Min[Re[p]] + Min[Im[p]]*I))& /@ p];
    allPieces[p_] := Union[canonical /@ dihedral[p]];
    polyominoes[1] = {{0}};
    polyominoes[n_] := polyominoes[n] = Module[{f, fig, ans = {}}, fig = ((f = #1; ({f, #1 + 1, f, #1 + I, f, #1 - 1, f, #1 - I}&) /@ f)&) /@ polyominoes[n - 1]; fig = Partition[Flatten[fig], n]; f = Select[Union[canonical /@ fig], Length[#1] == n &]; While[f != {}, ans = {ans, First[f]}; f = Complement[f, allPieces[First[f]]]]; Partition[Flatten[ans], n]];
    a[n_] := a[n] = Length[ polyominoes[n]];
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 12}] (* Jean-François Alcover, Mar 24 2015, after Jaime Rangel-Mondragón *)

Formula

a(n) = A000104(n) + A001419(n). - R. J. Mathar, Jun 15 2014
a(n) = A006749(n) + A006746(n) + A006748(n) + A006747(n) + A056877(n) + A056878(n) + A144553(n) + A142886(n). - Andrew Howroyd, Dec 04 2018
a(n) = A259087(n) + A259088(n). - R. J. Mathar, May 22 2019
a(n) = (4*A006746(n) + 4*A006748(n) + 4*A006747(n) + 6*A056877(n) + 6*A056878(n) + 6*A144553(n) + 7*A142886(n) + A001168(n))/8. - John Mason, Nov 14 2021

Extensions

Extended to n=28 by Tomás Oliveira e Silva
Link updated by William Rex Marshall, Dec 16 2009
Edited by Gill Barequet, May 24 2011
Misspelling "polyominos" corrected by Don Knuth, May 03 2016
a(29)-a(45), a(47) from Toshihiro Shirakawa
a(46) calculated using values from A001168 (I. Jensen), A006748/A056877/A056878/A144553/A142886 (Robert A. Russell) and A006746/A006747 (John Mason), Nov 14 2021

A000228 Number of hexagonal polyominoes (or hexagonal polyforms, or planar polyhexes) with n cells.

Original entry on oeis.org

1, 1, 3, 7, 22, 82, 333, 1448, 6572, 30490, 143552, 683101, 3274826, 15796897, 76581875, 372868101, 1822236628, 8934910362, 43939164263, 216651036012, 1070793308942, 5303855973849, 26323064063884, 130878392115834, 651812979669234, 3251215493161062, 16240020734253127, 81227147768301723, 406770970805865187, 2039375198751047333
Offset: 1

Views

Author

Keywords

Comments

From Markus Voege, Nov 24 2009: (Start)
On the difference between this sequence and A038147:
The first term that differs is for n=6; for all subsequent terms, the number of polyhexes is larger than the number of planar polyhexes.
If I recall correctly, polyhexes are clusters of regular hexagons that are joined at the edges and are LOCALLY embeddable in the hexagonal lattice.
"Planar polyhexes" are polyhexes that are GLOBALLY embeddable in the honeycomb lattice.
Example: (Planar) polyhex with 6 cells (x) and a hole (O):
.. x x
. x O x
.. x x
Polyhex with 6 cells that is cut open (I):
.. xIx
. x O x
.. x x
This polyhex is not globally embeddable in the honeycomb lattice, since adjacent cells of the lattice must be joined. But it can be embedded locally everywhere. It is a start of a spiral. For n>6 the spiral can be continued so that the cells overlap.
Illegal configuration with cut (I):
.. xIx
. x x x
.. x x
This configuration is NOT a polyhex since the vertex at
.. xIx
... x
is not embeddable in the honeycomb lattice.
One has to keep in mind that these definitions are inspired by chemistry. Hence, potential molecules are often the motivation for these definitions. Think of benzene rings that are fused at a C-C bond.
The (planar) polyhexes are "free" configurations, in contrast to "fixed" configurations as in A001207 = Number of fixed hexagonal polyominoes with n cells.
A000228 (planar polyhexes) and A001207 (fixed hexagonal polyominoes) differ only by the attribute "free" vs. "fixed," that is, whether the different orientations and reflections of an embedding in the lattice are counted.
The configuration
. x x .... x
.. x .... x x
is counted once as free and twice as fixed configurations.
Since most configurations have no symmetry, (A001207 / A000228) -> 12 for n -> infinity. (End)

References

  • A. T. Balaban and F. Harary, Chemical graphs V: enumeration and proposed nomenclature of benzenoid cata-condensed polycyclic aromatic hydrocarbons, Tetrahedron 24 (1968), 2505-2516.
  • A. T. Balaban and Paul von R. Schleyer, "Graph theoretical enumeration of polymantanes", Tetrahedron, (1978), vol. 34, 3599-3609
  • M. Gardner, Polyhexes and Polyaboloes. Ch. 11 in Mathematical Magic Show. New York: Vintage, pp. 146-159, 1978.
  • M. Gardner, Tiling with Polyominoes, Polyiamonds and Polyhexes. Chap. 14 in Time Travel and Other Mathematical Bewilderments. New York: W. H. Freeman, pp. 175-187, 1988.
  • J. V. Knop et al., On the total number of polyhexes, Match, No. 16 (1984), 119-134.
  • W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

a(13) from Achim Flammenkamp, Feb 15 1999
a(14) from Brendan Owen, Dec 31 2001
a(15) from Joseph Myers, May 05 2002
a(16)-a(20) from Joseph Myers, Sep 21 2002
a(21) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 05 2007
a(22)-a(30) from John Mason, Jul 18 2023

A000207 Number of inequivalent ways of dissecting a regular (n+2)-gon into n triangles by n-1 non-intersecting diagonals under rotations and reflections; also the number of (unlabeled) maximal outerplanar graphs on n+2 vertices.

Original entry on oeis.org

1, 1, 1, 3, 4, 12, 27, 82, 228, 733, 2282, 7528, 24834, 83898, 285357, 983244, 3412420, 11944614, 42080170, 149197152, 531883768, 1905930975, 6861221666, 24806004996, 90036148954, 327989004892, 1198854697588, 4395801203290, 16165198379984, 59609171366326, 220373278174641
Offset: 1

Views

Author

Keywords

Comments

Also a(n) is the number of hexaflexagons of order n+2. - Mike Godfrey (m.godfrey(AT)umist.ac.uk), Feb 25 2002 (see the Kosters paper).
Number of normally non-isomorphic realizations of the associahedron of type II with dimension n in Ceballos et al. - Tom Copeland, Oct 19 2011
Number of polyforms with n cells in the hyperbolic tiling with Schläfli symbol {3,oo}, not distinguishing enantiomorphs. - Thomas Anton, Jan 16 2019
A stereographic projection of the {3,oo} tiling on the Poincaré disk can be obtained via the Christensson link. - Robert A. Russell, Jan 20 2024
A maximal outerplanar graph (MOP) has a plane embedding with all vertices on the exterior region and interior regions triangles. - Allan Bickle, Feb 25 2024

Examples

			E.g., a square (4-gon, n=2) could have either diagonal drawn, C(3)=2, but with essentially only one result. A pentagon (5-gon, n=3) gives C(4)=5, but they each have 2 diags emanating from 1 of the 5 vertices and are essentially the same. A hexagon can have a nuclear disarmament sign (6 ways), an N (3 ways and 3 reflections) or a triangle (2 ways) of diagonals, 6 + 6 + 2 = 14 = C(5), but only 3 essentially different. - _R. K. Guy_, Mar 06 2004
G.f. = x + x^2 + x^3 + 3*x^4 + 4*x^5 + 12*x^6 + 27*x^7 + 82*x^8 + ...
		

References

  • L. W. Beineke and R. E. Pippert, Enumerating labeled k-dimensional trees and ball dissections, pp. 12-26 of Proceedings of Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications, University of North Carolina, Chapel Hill, 1970. Reprinted in Math. Annalen, 191 (1971), 87-98.
  • Cameron, Peter J. Some treelike objects. Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 155--183. MR0891613 (89a:05009). See pp. 155, 163, but note that the formulas on p. 163, lines 5 and 6, contain typos. See the correct formulas given here. - N. J. A. Sloane, Apr 18 2014
  • B. N. Cyvin, E. Brendsdal, J. Brunvoll and S. J. Cyvin, Isomers of polyenes attached to benzene, Croatica Chemica Acta, 68 (1995), 63-73.
  • S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751.
  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
  • R. K. Guy, "Dissecting a polygon into triangles," Bull. Malayan Math. Soc., Vol. 5, pp. 57-60, 1958.
  • R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 79, Table 3.5.1 (the entries for n=16 and n=21 appear to be incorrect).
  • M. Kosters, A theory of hexaflexagons, Nieuw Archief Wisk., 17 (1999), 349-362.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. K. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.

Crossrefs

Column k=3 of A295260.
A row or column of the array in A169808.
Polyominoes: A001683(n+2) (oriented), A369314 (chiral), A208355(n-1) (achiral), A005036 {4,oo}, A007173 {3,3,oo}.
Cf. A097998, A097999, A098000 (labeled outerplanar graphs).
Cf. A111563, A111564, A111758, A111759, A111757 (unlabeled outerplanar graphs).

Programs

  • Maple
    A000108 := proc(n) if n >= 0 then binomial(2*n,n)/(n+1) ; else 0; fi; end:
    A000207 := proc(n) option remember: local k, it1, it2;
    if n mod 2 = 0 then k := n/2+2 else k := (n+3)/2 fi:
    if n mod 2 <> 0 then it1 := 0 else it1 := 1 fi:
    if (n+2) mod 3 <> 0 then it2 := 0 else it2 := 1 fi:
    RETURN(A000108(n)/(2*n+4) + it1*A000108(n/2)/4 + A000108(k-2)/2 + it2*A000108((n-1)/3)/3)
    end:
    seq(A000207(n),n=1..30) ; # (Revised Maple program from R. J. Mathar, Apr 19 2009)
    A000207 := proc(n) option remember: local k,it1,it2; if n mod 2 = 0 then k := n/2+1 else k := (n+1)/2 fi: if n mod 2 <> 0 then it1 := 0 else it1 := 1 fi: if n mod 3 <> 0 then it2 := 0 else it2 := 1 fi: RETURN(A000108(n-2)/(2*n) + it1*A000108(n/2+1-2)/4 + A000108(k-2)/2 + it2*A000108(n/3+1-2)/3) end:
    A000207 := n->(A000108(n)/(n+2)+A000108(floor(n/2))*((1+(n+1 mod 2) /2)))/2+`if`(n mod 3=1,A000108(floor((n-1)/3))/3,0); # Peter Luschny, Apr 19 2009 and M. F. Hasler, Apr 19 2009
    G:=(12*(1+x-2*x^2)+(1-4*x)^(3/2)-3*(3+2*x)*(1-4*x^2)^(1/2)-4*(1-4*x^3)^(1/2))/24/x^2: Gser:=series(G,x=0,35): seq(coeff(Gser,x^n),n=1..31); # Emeric Deutsch, Dec 19 2004
  • Mathematica
    p=3; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) + If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)], 3Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1, 2}]])/2, {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *)
    a[n_] := (CatalanNumber[n]/(n+2) + CatalanNumber[ Quotient[n, 2]] *((1 + Mod[n-1, 2]/2)))/2 + If[Mod[n, 3] == 1, CatalanNumber[ Quotient[n-1, 3]]/3, 0] ; Table[a[n], {n, 1, 28}] (* Jean-François Alcover, Sep 08 2011, after PARI *)
  • PARI
    A000207(n)=(A000108(n)/(n+2)+A000108(n\2)*if(n%2,1,3/2))/2+if(n%3==1,A000108(n\3)/3) \\ M. F. Hasler, Apr 19 2009

Formula

a(n) = C(n)/(2*n) + C(n/2+1)/4 + C(k)/2 + C(n/3+1)/3 where C(n) = A000108(n-2) if n is an integer, 0 otherwise and k = (n+1)/2 if n is odd, k = n/2+1 if n is even. Thus C(2), C(3), C(4), C(5), ... are 1, 1, 2, 5, ...
G.f.: (12*(1+x-2*x^2) + (1-4*x)^(3/2) - 3*(3+2*x)*(1-4*x^2)^(1/2) - 4*(1-4*x^3)^(1/2))/(24*x^2). - Emeric Deutsch, Dec 19 2004, from the S. J. Cyvin et al. reference.
a(n) ~ A000108(n)/(2*n+4) ~ 4^n / (2 sqrt(n Pi)*(n + 1)*(n + 2)). - M. F. Hasler, Apr 19 2009
a(n) = A001683(n+2) - A369314(n) = (A001683(n+2) + A208355(n-1)) / 2 = A369314(n) + A208355(n-1). - Robert A. Russell, Jan 19 2024
Beineke and Pippert have an explicit formula with six cases (based on the value of n mod 6). - Allan Bickle, Feb 25 2024

Extensions

More terms from James Sellers, Jul 10 2000

A343909 Number of generalized polyforms on the tetrahedral-octahedral honeycomb with n cells.

Original entry on oeis.org

1, 2, 1, 4, 9, 44, 195, 1186, 7385, 49444, 337504, 2353664, 16608401, 118432965, 851396696, 6163949361, 44896941979
Offset: 0

Views

Author

Drake Thomas and Peter Kagey, May 03 2021

Keywords

Comments

This sequence counts "free" polyforms where holes are allowed. This means that two polyforms are considered the same if one is a rigid transformation (translation, rotation, reflection, or a combination thereof) of the other.

Examples

			For n = 1, the a(1) = 2 polyforms are the tetrahedron and the octahedron.
For n = 2, the a(2) = 1 polyform is a tetrahedron and an octahedron connected at a face.
For n = 3, there are a(3) = 4 polyforms with 3 cells:
  - 3 consisting of one octahedron with two tetrahedra, and
  - 1 consisting of two octahedra and one tetrahedron.
For n = 4, there are a(4) = 9 polyforms with 4 cells:
  - 3 with one octahedron and three tetrahedra,
  - 5 with two octahedra and three octahedra, and
  - 1 with three octahedra and one tetrahedron.
For n = 5, there are a(5) = 44 polyforms with 5 cells:
  - 6 with one octahedron and four tetrahedra,
  - 24 with two octahedra and three tetrahedra,
  - 13 with three octahedra and two tetrahedra, and
  - 1 with four octahedra and one tetrahedron.
		

Crossrefs

Row sums of A365970.
Analogous for other honeycombs/tilings: A000105 (square), A000228 (hexagonal), A000577 (triangular), A038119 (cubical), A068870 (tesseractic), A197156 (prismatic pentagonal), A197159 (floret pentagonal), A197459 (rhombille), A197462 (kisrhombille), A197465 (tetrakis square), A309159 (snub square), A343398 (trihexagonal), A343406 (truncated hexagonal), A343577 (truncated square).

Extensions

a(11)-a(16) from Bert Dobbelaere, Jun 10 2025

A197465 Number of free tetrakis polyaboloes (poly-[4.8^2]-tiles) with n cells, allowing holes, where division into tetrakis cells (triangular quarters of square grid cells) is significant.

Original entry on oeis.org

1, 2, 2, 6, 8, 22, 42, 112, 252, 650, 1584, 4091, 10369, 26938, 69651, 182116, 476272, 1253067, 3302187, 8733551, 23142116, 61477564, 163612714, 436278921, 1165218495, 3117021788, 8349892686, 22397754046, 60153261611
Offset: 1

Views

Author

Joseph Myers, Oct 15 2011

Keywords

Comments

See the link below for a definition of the tetrakis square tiling. When a square grid cell is divided into triangles, it must be divided dexter (\) or sinister (/) according to the parity of the grid cell.

Examples

			For n=3 there are 4 triaboloes.  Of these, 2 conform to the tetrakis grid.  Each of these 2 has a unique dissection into 6 tetrakis cells. - _George Sicherman_, Mar 25 2021
		

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, Sections 2.7, 6.2 and 9.4.

Crossrefs

Analogous for other tilings: A000105 (square), A000228 (hexagonal), A000577 (triangular), A197156 (prismatic pentagonal), A197159 (floret pentagonal), A197459 (rhombille), A197462 (kisrhombille), A309159 (snub square), A343398 (trihexagonal), A343406 (truncated hexagonal), A343577 (truncated square).

Extensions

Name clarified by George Sicherman, Mar 25 2021
a(21)-a(26) from Aaron N. Siegel, May 18 2022
a(27)-a(29) from Bert Dobbelaere, Jun 04 2025

A343577 Number of generalized polyforms on the truncated square tiling with n cells.

Original entry on oeis.org

1, 2, 2, 7, 22, 93, 413, 2073, 10741, 57540, 312805, 1722483, 9564565, 53489304, 300840332, 1700347858, 9650975401
Offset: 0

Views

Author

Peter Kagey, Apr 20 2021

Keywords

Comments

This sequence counts "free" polyforms where holes are allowed. This means that two polyforms are considered the same if one is a rigid transformation (translation, rotation, reflection or glide reflection) of the other.
a(n) >= A343417(n), the number of (n-k)-polyominoes with k distinguished vertices.

Crossrefs

Cf. A121197 (one-sided).
Analogous for other tilings: A000105 (square), A000228 (hexagonal), A000577 (triangular), A197156 (prismatic pentagonal), A197159 (floret pentagonal), A197459 (rhombille), A197462 (kisrhombille), A197465 (tetrakis square), A309159 (snub square), A343398 (trihexagonal), A343406 (truncated hexagonal).

Extensions

a(11) from Drake Thomas, May 02 2021
a(12)-a(16) from John Mason, Mar 20 2022

A001420 Number of fixed 2-dimensional triangular-celled animals with n cells (n-iamonds, polyiamonds) in the 2-dimensional hexagonal lattice.

Original entry on oeis.org

2, 3, 6, 14, 36, 94, 250, 675, 1838, 5053, 14016, 39169, 110194, 311751, 886160, 2529260, 7244862, 20818498, 59994514, 173338962, 501994070, 1456891547, 4236446214, 12341035217, 36009329450, 105229462401, 307942754342, 902338712971, 2647263986022, 7775314024683, 22861250676074, 67284446545605
Offset: 1

Views

Author

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.

References

  • W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

More terms from Brendan Owen (brendan_owen(AT)yahoo.com), Dec 15 2001
a(28) from Joseph Myers, Sep 24 2002
a(29)-a(31) from the Aleksandrowicz and Barequet paper (N. J. A. Sloane, Jul 09 2009)
Slightly edited by Gill Barequet, May 24 2011
a(32) from Paul Church, Oct 06 2011

A197159 Number of free poly-[3^4.6]-tiles (holes allowed) with n cells.

Original entry on oeis.org

1, 3, 8, 25, 80, 291, 1036, 3875, 14561, 55624, 213951, 830712, 3244355, 12747718, 50320659, 199491045, 793754027, 3168756843, 12687184463, 50932363171
Offset: 1

Views

Author

Joseph Myers, Oct 10 2011

Keywords

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, Sections 2.7, 6.2 and 9.4.

Crossrefs

Cf. A197160.
Analogous for other tilings: A000105 (square), A000228 (hexagonal), A000577 (triangular), A197156 (prismatic pentagonal), A197459 (rhombille), A197462 (kisrhombille), A197465 (tetrakis square), A309159 (snub square), A343398 (trihexagonal), A343406 (truncated hexagonal), A343577 (truncated square).

Extensions

a(16)-a(20) from Bert Dobbelaere, Jun 02 2025

A197459 Number of free poly-[3.6.3.6]-tiles (holes allowed) with n cells (division into rhombi is significant).

Original entry on oeis.org

1, 1, 3, 4, 12, 27, 78, 208, 635, 1859, 5726, 17526, 54620, 170479, 536714, 1694567, 5376764, 17110286, 54631302, 174879997, 561229678, 1805022806, 5817191196, 18781911278, 60744460580
Offset: 1

Views

Author

Joseph Myers, Oct 15 2011

Keywords

Comments

[3.6.3.6] refers to the face configuration of the rhombille tiling. - Peter Kagey, Mar 01 2020
If we draw the short diagonals of each tile in the rhombille tiling, we get a subset of edges of the regular hexagonal grid; two edges are adjacent if and only if the corresponding rhombi are adjacent. These are polyedges where angles are constrained to 120 degrees. So there is a 1-to-1 correspondence with the subset of polyedges counted in A159867 after removing polyedges with angles of 60 and/or 180 degrees. - Joseph Myers, Jul 12 2020
These are also known as polytwigs, by association with their representation as polyedges. - Aaron N. Siegel, May 15 2022

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, Sections 2.7, 6.2 and 9.4.

Crossrefs

Analogous for other tilings: A000105 (square), A000228 (hexagonal), A000577 (triangular), A197156 (prismatic pentagonal), A197159 (floret pentagonal), A197462 (kisrhombille), A197465 (tetrakis square), A309159 (snub square), A343398 (trihexagonal), A343406 (truncated hexagonal), A343577 (truncated square).

Extensions

a(18)-a(22) from Aaron N. Siegel, May 15 2022
a(23)-a(25) from Bert Dobbelaere, Jun 04 2025
Showing 1-10 of 70 results. Next