A057729
Number of triangular polyominoes (or polyiamonds) [A000577] with perimeter n.
Original entry on oeis.org
0, 0, 1, 1, 1, 4, 5, 16, 37, 120, 345, 1181, 3844, 13429, 46736, 167172
Offset: 1
- a(10) found by Brendan Owen.
a(12)-a(16) corrected and extended by
John Mason, Jul 26 2021
A000105
Number of free polyominoes (or square animals) with n cells.
Original entry on oeis.org
1, 1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17073, 63600, 238591, 901971, 3426576, 13079255, 50107909, 192622052, 742624232, 2870671950, 11123060678, 43191857688, 168047007728, 654999700403, 2557227044764, 9999088822075, 39153010938487, 153511100594603
Offset: 0
a(0) = 1 as there is 1 empty polyomino with #cells = 0. - _Fred Lunnon_, Jun 24 2020
- S. W. Golomb, Polyominoes, Appendix D, p. 152; Princeton Univ. Pr. NJ 1994
- J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 229.
- D. A. Klarner, The Mathematical Gardner, p. 252 Wadsworth Int. CA 1981
- W. F. Lunnon, Counting polyominoes, pp. 347-372 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
- W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
- George E. Martin, Polyominoes - A Guide to Puzzles and Problems in Tiling, The Mathematical Association of America, 1996
- Ed Pegg, Jr., Polyform puzzles, in Tribute to a Mathemagician, Peters, 2005, pp. 119-125.
- R. C. Read, Some applications of computers in graph theory, in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978, pp. 417-444.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- John Mason, Table of n, a(n) for n = 0..50 (terms 0..45,47 from Toshihiro Shirakawa)
- Z. Abel, E. Demaine, M. Demaine, H. Matsui and G. Rote, Common Developments of Several Different Orthogonal Boxes.
- G. Barequet, M. Moffie, A. Ribo and G. Rote, Counting polyominoes on twisted cylinders, Integers 6 (2006), A22, 37 pp. (electronic).
- K. S. Brown, Polyomino Enumerations
- G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European J. Combin. 28 (2007), no. 6, 1724-1741.
- Juris Čerņenoks and Andrejs Cibulis, Tetrads and their Counting, Baltic J. Modern Computing, Vol. 6 (2018), No. 2, 96-106.
- A. Clarke, Polyominoes
- A. R. Conway and A. J. Guttmann, On two-dimensional percolation, J. Phys. A: Math. Gen. 28(1995) 891-904.
- I. Jensen, Enumerations of lattice animals and trees, arXiv:cond-mat/0007239 [cond-mat.stat-mech], 2000.
- I. Jensen and A. J. Guttmann, Statistics of lattice animals (polyominoes) and polygons, Journal of Physics A: Mathematical and General, vol. 33, pp. L257-L263, 2000.
- M. Keller, Counting polyforms.
- D. A. Klarner and R. L. Rivest, A procedure for improving the upper bound for the number of n-ominoes, Canadian J. of Mathematics, 25 (1973), 585-602.
- N. Madras, A pattern theorem for lattice clusters, arXiv:math/9902161 [math.PR], 1999; Annals of Combinatorics, 3 (1999), 357-384.
- John Mason, Counting size 50 polyominoes -V2
- S. Mertens, Lattice animals: a fast enumeration algorithm and new perimeter polynomials, J. Statistical Physics, vol. 58, no. 5/6, pp. 1095-1108, Mar. 1990.
- Stephan Mertens and Markus E. Lautenbacher, Counting lattice animals: A parallel attack J. Stat. Phys., vol. 66, no. 1/2, pp. 669-678, 1992.
- W. R. Muller, K. Szymanski, J. V. Knop, and N. Trinajstic, On the number of square-cell configurations, Theor. Chim. Acta 86 (1993) 269-278
- Joseph Myers, Polyomino tiling
- Tomás Oliveira e Silva, Animal enumerations on regular tilings in Spherical, Euclidean and Hyperbolic 2-dimensional spaces
- Tomás Oliveira e Silva, Animal enumerations on the {4,4} Euclidean tiling [The enumeration to order 28]
- T. R. Parkin, L. J. Lander, and D. R. Parkin, Polyomino Enumeration Results, presented at SIAM Fall Meeting, 1967, and accompanying letter from T. J. Lander (annotated scanned copy)
- Anuj Pathania, Scalable Task Schedulers for Many-Core Architectures, Ph.D. Thesis, Karlsruher Instituts für Technologie (Germany, 2018).
- Ed Pegg, Jr., Illustrations of polyforms
- Henri Picciotto, Polyomino Lessons
- Jaime Rangel-Mondragón, Polyominoes and Related Families, The Mathematica Journal, Volume 9, Issue 3.
- D. H. Redelmeier, Counting polyominoes: yet another attack, Discrete Math., 36 (1981), 191-203.
- D. H. Redelmeier, Table 3 of Counting polyominoes...
- Toshihiro Shirakawa, Harmonic Magic Square, pp 3-4: Enumeration of Polyominoes considering the symmetry, April 2012.
- Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
- Eric Weisstein's World of Mathematics, Polyomino
- Wikipedia, The 35 hexominoes
- Wikipedia, The 108 heptominoes
- Wikipedia, The 369 octominoes
- Wikipedia, Polyomino
- D. Xu, T. Horiyama, T. Shirakawa and R. Uehara, Common Developments of Three Incongruent Boxes of Area 30, in Proc. 12th Annual Conference, TAMC 2015, Singapore, May 18-20, 2015, LNCS Vol. 9076, pp. 236-247.
- L. Zucca, Pentominoes
- L. Zucca, The 12 pentominoes
- Index entries for "core" sequences
Excluding a(0), 8th and 9th row of
A366766.
-
(* In this program by Jaime Rangel-Mondragón, polyominoes are represented as a list of Gaussian integers. *)
polyominoQ[p_List] := And @@ ((IntegerQ[Re[#]] && IntegerQ[Im[#]])& /@ p);
rot[p_?polyominoQ] := I*p;
ref[p_?polyominoQ] := (# - 2 Re[#])& /@ p;
cyclic[p_] := Module[{i = p, ans = {p}}, While[(i = rot[i]) != p, AppendTo[ans, i]]; ans];
dihedral[p_?polyominoQ] := Flatten[{#, ref[#]}& /@ cyclic[p], 1];
canonical[p_?polyominoQ] := Union[(# - (Min[Re[p]] + Min[Im[p]]*I))& /@ p];
allPieces[p_] := Union[canonical /@ dihedral[p]];
polyominoes[1] = {{0}};
polyominoes[n_] := polyominoes[n] = Module[{f, fig, ans = {}}, fig = ((f = #1; ({f, #1 + 1, f, #1 + I, f, #1 - 1, f, #1 - I}&) /@ f)&) /@ polyominoes[n - 1]; fig = Partition[Flatten[fig], n]; f = Select[Union[canonical /@ fig], Length[#1] == n &]; While[f != {}, ans = {ans, First[f]}; f = Complement[f, allPieces[First[f]]]]; Partition[Flatten[ans], n]];
a[n_] := a[n] = Length[ polyominoes[n]];
Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 12}] (* Jean-François Alcover, Mar 24 2015, after Jaime Rangel-Mondragón *)
Extended to n=28 by Tomás Oliveira e Silva
Misspelling "polyominos" corrected by
Don Knuth, May 03 2016
a(29)-a(45), a(47) from Toshihiro Shirakawa
A000228
Number of hexagonal polyominoes (or hexagonal polyforms, or planar polyhexes) with n cells.
Original entry on oeis.org
1, 1, 3, 7, 22, 82, 333, 1448, 6572, 30490, 143552, 683101, 3274826, 15796897, 76581875, 372868101, 1822236628, 8934910362, 43939164263, 216651036012, 1070793308942, 5303855973849, 26323064063884, 130878392115834, 651812979669234, 3251215493161062, 16240020734253127, 81227147768301723, 406770970805865187, 2039375198751047333
Offset: 1
- A. T. Balaban and F. Harary, Chemical graphs V: enumeration and proposed nomenclature of benzenoid cata-condensed polycyclic aromatic hydrocarbons, Tetrahedron 24 (1968), 2505-2516.
- A. T. Balaban and Paul von R. Schleyer, "Graph theoretical enumeration of polymantanes", Tetrahedron, (1978), vol. 34, 3599-3609
- M. Gardner, Polyhexes and Polyaboloes. Ch. 11 in Mathematical Magic Show. New York: Vintage, pp. 146-159, 1978.
- M. Gardner, Tiling with Polyominoes, Polyiamonds and Polyhexes. Chap. 14 in Time Travel and Other Mathematical Bewilderments. New York: W. H. Freeman, pp. 175-187, 1988.
- J. V. Knop et al., On the total number of polyhexes, Match, No. 16 (1984), 119-134.
- W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- John Mason and Robert A. Russell, Table of n, a(n) for n = 1..36
- Frédéric Chyzak, Ivan Gutman, and Peter Paule, Predicting the number of hexagonal systems with 24 and 25 hexagons, Communications in Mathematical and Computer Chemistry (1999) No. 40, 139-151. See p. 141.
- A. Clarke, Polyhexes
- F. Harary and R. C. Read, The enumeration of tree-like polyhexes, Proc. Edinburgh Math. Soc. (2) 17 (1970), 1-13.
- D. Gouyou-Beauchamps and P. Leroux, Enumeration of symmetry classes of convex polyominoes on the honeycomb lattice, arXiv:math/0403168 [math.CO], 2004.
- M. Keller, Counting polyforms
- D. A. Klarner, Cell growth problems, Canad. J. Math. 19 (1967) 851-863.
- J. V. Knop, K. Szymanski, Ž. Jeričević, and N. Trinajstić, On the total number of polyhexes, Match, No. 16 (1984), 119-134.
- Greg Malen, Érika Roldán, and Rosemberg Toalá-Enríquez, Extremal {p, q}-Animals, Ann. Comb. (2023), p. 3.
- John Mason, Counting polyhexes of size 36, updated Oct 27 2023.
- Joseph Myers, Polyomino, polyhex and polyiamond tiling
- Ed Pegg, Jr., Illustrations of polyforms
- Jaime Rangel-Mondragon, Polyominoes and Related Families, The Mathematica Journal, 9:3 (2005), 609-640.
- N. J. A. Sloane, Illustration of initial terms
- N. Trinajstich, Z. Jerievi, J. V. Knop, W. R. Muller and K. Szymanski, Computer Generation of Isomeric Structures, Pure & Appl. Chem., Vol. 55, No. 2, pp. 379-390, 1983.
- Eric Weisstein's World of Mathematics, Polyhex.
a(14) from Brendan Owen, Dec 31 2001
a(21) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 05 2007
A000207
Number of inequivalent ways of dissecting a regular (n+2)-gon into n triangles by n-1 non-intersecting diagonals under rotations and reflections; also the number of (unlabeled) maximal outerplanar graphs on n+2 vertices.
Original entry on oeis.org
1, 1, 1, 3, 4, 12, 27, 82, 228, 733, 2282, 7528, 24834, 83898, 285357, 983244, 3412420, 11944614, 42080170, 149197152, 531883768, 1905930975, 6861221666, 24806004996, 90036148954, 327989004892, 1198854697588, 4395801203290, 16165198379984, 59609171366326, 220373278174641
Offset: 1
E.g., a square (4-gon, n=2) could have either diagonal drawn, C(3)=2, but with essentially only one result. A pentagon (5-gon, n=3) gives C(4)=5, but they each have 2 diags emanating from 1 of the 5 vertices and are essentially the same. A hexagon can have a nuclear disarmament sign (6 ways), an N (3 ways and 3 reflections) or a triangle (2 ways) of diagonals, 6 + 6 + 2 = 14 = C(5), but only 3 essentially different. - _R. K. Guy_, Mar 06 2004
G.f. = x + x^2 + x^3 + 3*x^4 + 4*x^5 + 12*x^6 + 27*x^7 + 82*x^8 + ...
- L. W. Beineke and R. E. Pippert, Enumerating labeled k-dimensional trees and ball dissections, pp. 12-26 of Proceedings of Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications, University of North Carolina, Chapel Hill, 1970. Reprinted in Math. Annalen, 191 (1971), 87-98.
- Cameron, Peter J. Some treelike objects. Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 155--183. MR0891613 (89a:05009). See pp. 155, 163, but note that the formulas on p. 163, lines 5 and 6, contain typos. See the correct formulas given here. - N. J. A. Sloane, Apr 18 2014
- B. N. Cyvin, E. Brendsdal, J. Brunvoll and S. J. Cyvin, Isomers of polyenes attached to benzene, Croatica Chemica Acta, 68 (1995), 63-73.
- S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751.
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
- R. K. Guy, "Dissecting a polygon into triangles," Bull. Malayan Math. Soc., Vol. 5, pp. 57-60, 1958.
- R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 79, Table 3.5.1 (the entries for n=16 and n=21 appear to be incorrect).
- M. Kosters, A theory of hexaflexagons, Nieuw Archief Wisk., 17 (1999), 349-362.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. K. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.
- T. D. Noe, Table of n, a(n) for n = 1..200
- F. R. Bernhart & N. J. A. Sloane, Correspondence, 1977
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- Douglas Bowman and Alon Regev, Counting symmetry classes of dissections of a convex regular polygon, arXiv preprint arXiv:1209.6270 [math.CO], 2012.
- William G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- P. J. Cameron, Some treelike objects, Quart. J. Math. Oxford, 38 (1987), 155-183. See p. 160.
- C. Ceballos, F. Santos, and G. Ziegler, Many Non-equivalent Realizations of the Associahedron, arXiv:1109.5544 [math.MG], 2011-2013, p. 19 and 26.
- Malin Christensson, Make hyperbolic tilings of images, web page, 2019.
- Sean Cleary, Roland Maio, Counting difficult tree pairs with respect to the rotation distance problem, arXiv:2001.06407 [cs.DS], 2020.
- A. S. Conrad and D. K. Hartline, Flexagons
- S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751. [Annotated scanned copy]
- R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967. [Annotated scanned copy]
- F. Harary and E. M. Palmer, On acyclic simplicial complexes, Mathematika 15 1968 115-122.
- F. Harary, E. M. Palmer, and R. C. Read, On the cell-growth problem for arbitrary polygons, computer printout, circa 1974
- F. Harary, E. M. Palmer and R. C. Read, On the cell-growth problem for arbitrary polygons, Discr. Math. 11 (1975), 371-389 (the entries for n=4 and n=30 appear to be incorrect).
- J. W. Moon and L. Moser, Triangular dissections of n-gons, Canad. Math. Bull., 6 (1963), 175-178.
- T. Motzkin, The hypersurface cross ratio, Bull. Amer. Math. Soc., 51 (1945), 976-984.
- T. S. Motzkin, Relations between hypersurface cross ratios and a combinatorial formula for partitions of a polygon, for permanent preponderance and for non-associative products, Bull. Amer. Math. Soc., 54 (1948), 352-360 (the entry for n=10 appears to be incorrect).
- C. O. Oakley and R. J. Wisner, Flexagons, Amer. Math. Monthly 64 (1957), 143-154.
- Hans Rademacher, On the number of certain types of polyhedra, Illinois Journal of Mathematics 9.3 (1965): 361-380. Reprinted in Coll. Papers, Vol II, MIT Press, 1974, pp. 544-564.
- Manfred Scheucher, Hendrik Schrezenmaier, Raphael Steiner, A Note On Universal Point Sets for Planar Graphs, arXiv:1811.06482 [math.CO], 2018.
- Len Smiley, Illustration of initial terms
- Tiberiu Spircu and Stefan V. Pantazi, Again around frieze patterns, arXiv:2002.08211 [math.CO], 2020. See Kn p. 13.
- P. J. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974. [Scanned annotated and corrected copy]
A row or column of the array in
A169808.
-
A000108 := proc(n) if n >= 0 then binomial(2*n,n)/(n+1) ; else 0; fi; end:
A000207 := proc(n) option remember: local k, it1, it2;
if n mod 2 = 0 then k := n/2+2 else k := (n+3)/2 fi:
if n mod 2 <> 0 then it1 := 0 else it1 := 1 fi:
if (n+2) mod 3 <> 0 then it2 := 0 else it2 := 1 fi:
RETURN(A000108(n)/(2*n+4) + it1*A000108(n/2)/4 + A000108(k-2)/2 + it2*A000108((n-1)/3)/3)
end:
seq(A000207(n),n=1..30) ; # (Revised Maple program from R. J. Mathar, Apr 19 2009)
A000207 := proc(n) option remember: local k,it1,it2; if n mod 2 = 0 then k := n/2+1 else k := (n+1)/2 fi: if n mod 2 <> 0 then it1 := 0 else it1 := 1 fi: if n mod 3 <> 0 then it2 := 0 else it2 := 1 fi: RETURN(A000108(n-2)/(2*n) + it1*A000108(n/2+1-2)/4 + A000108(k-2)/2 + it2*A000108(n/3+1-2)/3) end:
A000207 := n->(A000108(n)/(n+2)+A000108(floor(n/2))*((1+(n+1 mod 2) /2)))/2+`if`(n mod 3=1,A000108(floor((n-1)/3))/3,0); # Peter Luschny, Apr 19 2009 and M. F. Hasler, Apr 19 2009
G:=(12*(1+x-2*x^2)+(1-4*x)^(3/2)-3*(3+2*x)*(1-4*x^2)^(1/2)-4*(1-4*x^3)^(1/2))/24/x^2: Gser:=series(G,x=0,35): seq(coeff(Gser,x^n),n=1..31); # Emeric Deutsch, Dec 19 2004
-
p=3; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) + If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)], 3Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1, 2}]])/2, {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *)
a[n_] := (CatalanNumber[n]/(n+2) + CatalanNumber[ Quotient[n, 2]] *((1 + Mod[n-1, 2]/2)))/2 + If[Mod[n, 3] == 1, CatalanNumber[ Quotient[n-1, 3]]/3, 0] ; Table[a[n], {n, 1, 28}] (* Jean-François Alcover, Sep 08 2011, after PARI *)
-
A000207(n)=(A000108(n)/(n+2)+A000108(n\2)*if(n%2,1,3/2))/2+if(n%3==1,A000108(n\3)/3) \\ M. F. Hasler, Apr 19 2009
A343909
Number of generalized polyforms on the tetrahedral-octahedral honeycomb with n cells.
Original entry on oeis.org
1, 2, 1, 4, 9, 44, 195, 1186, 7385, 49444, 337504, 2353664, 16608401, 118432965, 851396696, 6163949361, 44896941979
Offset: 0
For n = 1, the a(1) = 2 polyforms are the tetrahedron and the octahedron.
For n = 2, the a(2) = 1 polyform is a tetrahedron and an octahedron connected at a face.
For n = 3, there are a(3) = 4 polyforms with 3 cells:
- 3 consisting of one octahedron with two tetrahedra, and
- 1 consisting of two octahedra and one tetrahedron.
For n = 4, there are a(4) = 9 polyforms with 4 cells:
- 3 with one octahedron and three tetrahedra,
- 5 with two octahedra and three octahedra, and
- 1 with three octahedra and one tetrahedron.
For n = 5, there are a(5) = 44 polyforms with 5 cells:
- 6 with one octahedron and four tetrahedra,
- 24 with two octahedra and three tetrahedra,
- 13 with three octahedra and two tetrahedra, and
- 1 with four octahedra and one tetrahedron.
Analogous for other honeycombs/tilings:
A000105 (square),
A000228 (hexagonal),
A000577 (triangular),
A038119 (cubical),
A068870 (tesseractic),
A197156 (prismatic pentagonal),
A197159 (floret pentagonal),
A197459 (rhombille),
A197462 (kisrhombille),
A197465 (tetrakis square),
A309159 (snub square),
A343398 (trihexagonal),
A343406 (truncated hexagonal),
A343577 (truncated square).
A197465
Number of free tetrakis polyaboloes (poly-[4.8^2]-tiles) with n cells, allowing holes, where division into tetrakis cells (triangular quarters of square grid cells) is significant.
Original entry on oeis.org
1, 2, 2, 6, 8, 22, 42, 112, 252, 650, 1584, 4091, 10369, 26938, 69651, 182116, 476272, 1253067, 3302187, 8733551, 23142116, 61477564, 163612714, 436278921, 1165218495, 3117021788, 8349892686, 22397754046, 60153261611
Offset: 1
For n=3 there are 4 triaboloes. Of these, 2 conform to the tetrakis grid. Each of these 2 has a unique dissection into 6 tetrakis cells. - _George Sicherman_, Mar 25 2021
- Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, Sections 2.7, 6.2 and 9.4.
Analogous for other tilings:
A000105 (square),
A000228 (hexagonal),
A000577 (triangular),
A197156 (prismatic pentagonal),
A197159 (floret pentagonal),
A197459 (rhombille),
A197462 (kisrhombille),
A309159 (snub square),
A343398 (trihexagonal),
A343406 (truncated hexagonal),
A343577 (truncated square).
A343577
Number of generalized polyforms on the truncated square tiling with n cells.
Original entry on oeis.org
1, 2, 2, 7, 22, 93, 413, 2073, 10741, 57540, 312805, 1722483, 9564565, 53489304, 300840332, 1700347858, 9650975401
Offset: 0
Analogous for other tilings:
A000105 (square),
A000228 (hexagonal),
A000577 (triangular),
A197156 (prismatic pentagonal),
A197159 (floret pentagonal),
A197459 (rhombille),
A197462 (kisrhombille),
A197465 (tetrakis square),
A309159 (snub square),
A343398 (trihexagonal),
A343406 (truncated hexagonal).
A001420
Number of fixed 2-dimensional triangular-celled animals with n cells (n-iamonds, polyiamonds) in the 2-dimensional hexagonal lattice.
Original entry on oeis.org
2, 3, 6, 14, 36, 94, 250, 675, 1838, 5053, 14016, 39169, 110194, 311751, 886160, 2529260, 7244862, 20818498, 59994514, 173338962, 501994070, 1456891547, 4236446214, 12341035217, 36009329450, 105229462401, 307942754342, 902338712971, 2647263986022, 7775314024683, 22861250676074, 67284446545605
Offset: 1
- W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vaclav Kotesovec, Table of n, a(n) for n = 1..75 (from reference by A. J. Guttmann)
- G. Aleksandrowicz and G. Barequet, counting d-dimensional polycubes and nonrectangular planar polyomnoes, Lect. Not. Comp. Sci 4112 (2006) 418-427 Table 3
- G. Aleksandrowicz and G. Barequet, Counting d-dimensional polycubes and nonrectangular planar polyominoes, Int. J. of Computational Geometry and Applications, 19 (2009), 215-229.
- Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016.
- Gill Barequet and Mirah Shalah, Improved Bounds on the Growth Constant of Polyiamonds, 32nd European Workshop on Computational Geometry, 2016.
- Gill Barequet, Mira Shalah, and Yufei Zheng, An Improved Lower Bound on the Growth Constant of Polyiamonds, In: Cao Y., Chen J. (eds) Computing and Combinatorics, COCOON 2017, Lecture Notes in Computer Science, vol 10392.
- Vuong Bui, The number of polyiamonds is almost supermultiplicative, arXiv:2304.10077 [math.CO], 2023.
- A. J. Guttmann (ed.), Polygons, Polyominoes and Polycubes, Lecture Notes in Physics, 775 (2009). (Table 16.11, p. 479 has 75 terms of this sequence.)
- Greg Malen, Érika Roldán, and Rosemberg Toalá-Enríquez, Extremal {p, q}-Animals, Ann. Comb. (2023), p. 3.
- G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
- H. Redelmeier, Emails to N. J. A. Sloane, 1991
More terms from Brendan Owen (brendan_owen(AT)yahoo.com), Dec 15 2001
a(29)-a(31) from the Aleksandrowicz and Barequet paper (
N. J. A. Sloane, Jul 09 2009)
A197159
Number of free poly-[3^4.6]-tiles (holes allowed) with n cells.
Original entry on oeis.org
1, 3, 8, 25, 80, 291, 1036, 3875, 14561, 55624, 213951, 830712, 3244355, 12747718, 50320659, 199491045, 793754027, 3168756843, 12687184463, 50932363171
Offset: 1
- Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, Sections 2.7, 6.2 and 9.4.
Analogous for other tilings:
A000105 (square),
A000228 (hexagonal),
A000577 (triangular),
A197156 (prismatic pentagonal),
A197459 (rhombille),
A197462 (kisrhombille),
A197465 (tetrakis square),
A309159 (snub square),
A343398 (trihexagonal),
A343406 (truncated hexagonal),
A343577 (truncated square).
A197459
Number of free poly-[3.6.3.6]-tiles (holes allowed) with n cells (division into rhombi is significant).
Original entry on oeis.org
1, 1, 3, 4, 12, 27, 78, 208, 635, 1859, 5726, 17526, 54620, 170479, 536714, 1694567, 5376764, 17110286, 54631302, 174879997, 561229678, 1805022806, 5817191196, 18781911278, 60744460580
Offset: 1
- Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, Sections 2.7, 6.2 and 9.4.
Analogous for other tilings:
A000105 (square),
A000228 (hexagonal),
A000577 (triangular),
A197156 (prismatic pentagonal),
A197159 (floret pentagonal),
A197462 (kisrhombille),
A197465 (tetrakis square),
A309159 (snub square),
A343398 (trihexagonal),
A343406 (truncated hexagonal),
A343577 (truncated square).
Showing 1-10 of 70 results.
Comments