cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A000105 Number of free polyominoes (or square animals) with n cells.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17073, 63600, 238591, 901971, 3426576, 13079255, 50107909, 192622052, 742624232, 2870671950, 11123060678, 43191857688, 168047007728, 654999700403, 2557227044764, 9999088822075, 39153010938487, 153511100594603
Offset: 0

Views

Author

Keywords

Comments

For n>0, a(n) + A030228(n) = A000988(n) because the number of free polyominoes plus the number of polyominoes lacking bilateral symmetry equals the number of one-sided polyominoes. - Graeme McRae, Jan 05 2006
The possible symmetry groups of a (nonempty) polyomino are the 10 subgroups of the dihedral group D_8 of order 8: D_8, 1, Z_2 (five times), Z_4, (Z_2)^2 (twice). - Benoit Jubin, Dec 30 2008
Names for first few polyominoes: monomino, domino, tromino, tetromino, pentomino, hexomino, heptomino, octomino, enneomino, decomino, hendecomino, dodecomino, ...
Limit_{n->oo} a(n)^(1/n) = mu with 3.98 < mu < 4.64 (quoted by Castiglione et al., with a reference to Barequet et al., 2006, for the lower bound). The upper bound is due to Klarner and Rivest, 1973. By Madras, 1999, it is now known that this limit, also known as Klarner's constant, is equal to the limit growth rate lim_{n->oo} a(n+1)/a(n).
Polyominoes are worth exploring in the elementary school classroom. Students in grade 2 can reproduce the first 6 terms. Grade 3 students can explore area and perimeter. Grade 4 students can talk about polyomino symmetries.
The pentominoes should be singled out for special attention: 1) they offer a nice, manageable set that a teacher can commercially acquire without too much expense. 2) There are also deeply strategic games and perplexing puzzles that are great for all students. 3) A fraction of students will become engaged because of the beautiful solutions.
Conjecture: Almost all polyominoes are holey. In other words, A000104(n)/a(n) tends to 0 for increasing n. - John Mason, Dec 11 2021 (This is true, a consequence of Madras's 1999 pattern theorem. - Johann Peters, Jan 06 2024)

Examples

			a(0) = 1 as there is 1 empty polyomino with #cells = 0. - _Fred Lunnon_, Jun 24 2020
		

References

  • S. W. Golomb, Polyominoes, Appendix D, p. 152; Princeton Univ. Pr. NJ 1994
  • J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 229.
  • D. A. Klarner, The Mathematical Gardner, p. 252 Wadsworth Int. CA 1981
  • W. F. Lunnon, Counting polyominoes, pp. 347-372 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
  • W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
  • George E. Martin, Polyominoes - A Guide to Puzzles and Problems in Tiling, The Mathematical Association of America, 1996
  • Ed Pegg, Jr., Polyform puzzles, in Tribute to a Mathemagician, Peters, 2005, pp. 119-125.
  • R. C. Read, Some applications of computers in graph theory, in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978, pp. 417-444.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences classifying polyominoes by symmetry group: A006746, A006747, A006748, A006749, A056877, A056878, A142886, A144553, A144554.
Cf. A001168 (not reduced by D_8 symmetry), A000104 (no holes), A054359, A054360, A001419, A000988, A030228 (chiral polyominoes).
See A006765 for another version.
Cf. also A000577, A000228, A103465, A210996 (bisection).
Excluding a(0), 8th and 9th row of A366766.

Programs

  • Mathematica
    (* In this program by Jaime Rangel-Mondragón, polyominoes are represented as a list of Gaussian integers. *)
    polyominoQ[p_List] := And @@ ((IntegerQ[Re[#]] && IntegerQ[Im[#]])& /@ p);
    rot[p_?polyominoQ] := I*p;
    ref[p_?polyominoQ] := (# - 2 Re[#])& /@ p;
    cyclic[p_] := Module[{i = p, ans = {p}}, While[(i = rot[i]) != p, AppendTo[ans, i]]; ans];
    dihedral[p_?polyominoQ] := Flatten[{#, ref[#]}& /@ cyclic[p], 1];
    canonical[p_?polyominoQ] := Union[(# - (Min[Re[p]] + Min[Im[p]]*I))& /@ p];
    allPieces[p_] := Union[canonical /@ dihedral[p]];
    polyominoes[1] = {{0}};
    polyominoes[n_] := polyominoes[n] = Module[{f, fig, ans = {}}, fig = ((f = #1; ({f, #1 + 1, f, #1 + I, f, #1 - 1, f, #1 - I}&) /@ f)&) /@ polyominoes[n - 1]; fig = Partition[Flatten[fig], n]; f = Select[Union[canonical /@ fig], Length[#1] == n &]; While[f != {}, ans = {ans, First[f]}; f = Complement[f, allPieces[First[f]]]]; Partition[Flatten[ans], n]];
    a[n_] := a[n] = Length[ polyominoes[n]];
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 12}] (* Jean-François Alcover, Mar 24 2015, after Jaime Rangel-Mondragón *)

Formula

a(n) = A000104(n) + A001419(n). - R. J. Mathar, Jun 15 2014
a(n) = A006749(n) + A006746(n) + A006748(n) + A006747(n) + A056877(n) + A056878(n) + A144553(n) + A142886(n). - Andrew Howroyd, Dec 04 2018
a(n) = A259087(n) + A259088(n). - R. J. Mathar, May 22 2019
a(n) = (4*A006746(n) + 4*A006748(n) + 4*A006747(n) + 6*A056877(n) + 6*A056878(n) + 6*A144553(n) + 7*A142886(n) + A001168(n))/8. - John Mason, Nov 14 2021

Extensions

Extended to n=28 by Tomás Oliveira e Silva
Link updated by William Rex Marshall, Dec 16 2009
Edited by Gill Barequet, May 24 2011
Misspelling "polyominos" corrected by Don Knuth, May 03 2016
a(29)-a(45), a(47) from Toshihiro Shirakawa
a(46) calculated using values from A001168 (I. Jensen), A006748/A056877/A056878/A144553/A142886 (Robert A. Russell) and A006746/A006747 (John Mason), Nov 14 2021

A144553 Number of chiral pairs of polyominoes with n cells that have precisely the symmetry group of order 4 generated by 90-degree rotations.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 2, 0, 0, 12, 7, 0, 0, 44, 25, 0, 0, 165, 90, 0, 0, 603, 319, 0, 0, 2235, 1136, 0, 0, 8283, 4088, 0, 0, 30936, 14868, 0, 0, 116111, 54526, 0, 0, 438465, 201527, 0, 0, 1663720, 750169, 0, 0, 6342211, 2809931, 0, 0, 24273767
Offset: 1

Views

Author

N. J. A. Sloane, Jan 01 2009

Keywords

Comments

The values for n>28 were produced by a set of programs, the most difficult of which is attached. There is no guarantee that the values are correct, although presumably Shirakawa has calculated them through a(45). The attached program can be altered to count only achiral polyominoes, and those results match those of A142886, which uses a very different method. The difficulties lie in determining each inner loop (A324408 and A324409) and in determining connections within the inner loop (bad_connection subroutine). The last bug I found in the program affected only polyominoes with 72 or more cells. - Robert A. Russell, May 23 2020
These are polyominoes of the regular tiling with Schläfli symbol {4,4}. In late August, 2021, John Mason informed me that there were errors for a(44) and higher. My error in a(44) was a copying error, but later entries were wrong because of my programming errors. After making corrections (see attached C++ program), our values now match. John uses a unique calculation of his own devising. Since it is quite different from Redelmeier's inner rings, the match gives us some confidence in the current values. - Robert A. Russell, Nov 01 2021
Polyominoes with precisely 90-degree symmetry centered about square centers and vertices are enumerated by A351142 and A234007 respectively. - John Mason, Feb 17 2022

Examples

			For a(8)=1, the polyomino is a central 2 X 2 square with one cell attached to each edge of that square. - _Robert A. Russell_, Nov 01 2021
		

Crossrefs

Sequences classifying polyominoes by symmetry group: A000105, A006746, A006747, A006748, A006749, A056877, A056878, A142886, A144553, A144554, A351142, A234007.
Cf. A324408, A324409 (inner rings).
Cf. A348848 (C90), A348849 (F90).

Programs

Formula

a(n) = A030228(n) - A006747(n) - A006749(n). - Jean-François Alcover, Sep 09 2019, after Andrew Howroyd in A030228.
a(n) = (A348848(n/4)+A348849(n)-A142886(n)) / 2, where the first two are F90 and C90 of the Shirakawa link. - Robert A. Russell, Nov 01 2021
a(n) = A351142(n) + A234007(n/4) if n is a multiple of 4, otherwise a(n) = A351142(n). - John Mason, Feb 17 2022

Extensions

a(28) added by Andrew Howroyd, Dec 04 2018
a(29)-a(91) added by Robert A. Russell, May 23 2020
Warning: It seems that the C++ program and the Mathematica program produce different results. This means that the b-file, and possibly even the terms in the DATA lines, are suspect. - N. J. A. Sloane, Aug 17 2022
After John Mason's Apr 15 2023 correction to the b-file of A006749, the discrepancy disappeared. - Andrey Zabolotskiy, Jan 18 2024

A000988 Number of one-sided polyominoes with n cells.

Original entry on oeis.org

1, 1, 1, 2, 7, 18, 60, 196, 704, 2500, 9189, 33896, 126759, 476270, 1802312, 6849777, 26152418, 100203194, 385221143, 1485200848, 5741256764, 22245940545, 86383382827, 336093325058, 1309998125640, 5114451441106, 19998172734786, 78306011677182, 307022182222506, 1205243866707468, 4736694001644862
Offset: 0

Views

Author

N. J. A. Sloane, hugh(AT)mimosa.com (D. Hugh Redelmeier)

Keywords

Comments

A000105(n) + A030228(n) = a(n) because the number of free polyominoes plus the number of polyominoes lacking bilateral symmetry equals the number of one-sided polyominoes. - Graeme McRae, Jan 05 2006
Names for the first few polyominoes: monomino, domino, tromino, tetromino, pentomino, hexomino, heptomino, octomino, enneomino (aka nonomino), decomino, hendecomino (aka undecomino), dodecomino, ...

Examples

			a(0) = 1 as there is 1 empty polyomino with #cells = 0. - _Fred Lunnon_, Jun 24 2020
		

References

  • S. W. Golomb, Polyominoes. Scribner's, NY, 1965; second edition (Polyominoes: Puzzles, Packings, Problems and Patterns) Princeton Univ. Press, 1994.
  • J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 229.
  • W. F. Lunnon, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A006758 for another version. Subtracting 1 gives first column of A195738. Cf. A000105 (unoriented), A030228 (chiral), A030227 (achiral), A001168 (fixed).

Formula

a(n) = 2*A006749(n) + A006746(n) + A006748(n) + 2*A006747(n) + A056877(n) + A056878(n) + 2*A144553(n) + A142886(n). - Andrew Howroyd, Dec 04 2018
a(n) = 2*A000105(n) - A030227(n) = 2*A030228(n) + A030227(n). - Robert A. Russell, Feb 03 2022

Extensions

a(0) = 1 added by N. J. A. Sloane, Jun 24 2020

A030227 Number of achiral polyominoes with n cells.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 10, 20, 34, 70, 121, 250, 441, 912, 1630, 3375, 6092, 12624, 22961, 47616, 87136, 180811, 332549, 690398, 1275166, 2648422, 4909364, 10199792, 18966700, 39416488, 73497642, 152777230, 285569898, 593717419, 1112188817, 2312672439, 4340728280
Offset: 0

Views

Author

Keywords

Comments

Polyominoes with n cells and at least one line of reflection symmetry. - Joshua Zucker, Mar 08 2008
This sequence can most readily be calculated by enumerating fixed polyominoes for three different axes of symmetry: 1) a line composed of the diagonals of cells, A346800, 2) a line composed of edges of cells, and 3) a line composed of lines connecting the centers of adjacent cells, A346799. For the second case, any fixed polyomino just touching the edge line is reflected on the other side, so that sequence is A001168(n/2) for even values of n and zero otherwise. These three sequences together include each achiral polyomino exactly twice. - Robert A. Russell, Aug 04 2021

Examples

			For a(4)=3, the achiral tetrominoes are a 2 X 2 square, a 1 X 4 rectangle, and a cell plus three cells adjacent to it (forming a shortened T).
		

Crossrefs

Cf. A000988 (oriented), A000105 (unoriented), A030228 (chiral).
Cf. A006746, A006748, A056877, A056878, A142886 (subcategories).

Programs

Formula

a(n) = A000105(n) - A030228(n) = 2*A000105(n) - A000988(n). - Andrew Howroyd, Dec 04 2018
a(n) = A006746(n) + A006748(n) + A056877(n) + A056878(n) + A142886(n) = A000988(n) - 2*A030228(n). - Robert A. Russell, Feb 02 2019
For odd n, a(n) = (A346799(n) + A346800(n)) / 2; for even n, a(n) = (A346799(n) + A001168(n/2) + A346800(n)) / 2. - Robert A. Russell, Aug 04 2021

Extensions

a(23)-a(36) from Andrew Howroyd, Dec 04 2018
Name edited by Robert A. Russell, Feb 03 2019
Offset changed to 0, and a(0) added by John Mason, Jan 12 2023

A121198 Number of one-sided chessboard polyominoes with n cells (similar to but different from A001071).

Original entry on oeis.org

2, 1, 4, 10, 36, 110, 392, 1371, 5000, 18251, 67792, 253040, 952540, 3602846, 13699554, 52298057, 200406388, 770416390, 2970401696, 11482413680, 44491881090, 172766379334, 672186650116, 2619994749395, 10228902882212, 39996339612824, 156612023354364, 614044341535992
Offset: 1

Views

Author

N. J. A. Sloane, Aug 17 2006

Keywords

Comments

Consider the tiling of the plane with squares of two different sizes as seen for example in Fig. 2.4.2(g) of Grünbaum and Shephard, p. 74. Sequence gives the number of "n-PairSquares", that is, polyominoes or animals that can be formed on this tiling from "n big or little squares, where the conjunction between two squares must involve an entire edge at least". - Original description (N. J. A. Sloane, Aug 17 2006, with quote from Livio Zucca's site)
Also counts one-sided polyominoes cut from an infinite chessboard with the usual coloring (big and little squares in Fig. 2.4.2(g) of Grünbaum and Shephard are equivalent to the two colors on a chessboard, and ignoring connections that are not a whole edge of one square means the connectivity is also equivalent); see Myers link regarding difference from A001071 for even terms a(6) onwards. - Joseph Myers, Oct 01 2011

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987.

Crossrefs

Cf. A001071, A001933, A121195, A121196, A000105 (free polyominoes), A030228 (chiral polyominoes), A234009 (free polyominoes with 90-degree rotational symmetry about a square corner), A234007 (chiral polyominoes with 90-degree rotational symmetry about a square corner), A346799 (achiral polyominoes with twofold rotational symmetry around the center of an edge), A234008 (chiral polyominoes with 180-degree rotational symmetry about the center of an edge).

Formula

From John Mason, Dec 24 2021: (Start)
For odd n, a(n) = 2*A000105(n) + 2*A030228(n).
For n multiple of 2 but not of 4, a(n) = 2*A000105(n) + 2*A030228(n) - A346799(n/2) - 2*A234008(n/2).
For n multiple of 4, a(n) = 2*A000105(n) + 2*A030228(n) - A346799(n/2) - 2*A234008(n/2) - A234009(n/4) - A234007(n/4). (End)

Extensions

a(6)-a(17) by Joseph Myers, Oct 01 2011
a(18)-a(21) by John Mason, Jan 04 2014
Erroneous a(21) removed by John Mason, Feb 12 2021
a(21)-a(28) from John Mason, Dec 24 2021
Showing 1-5 of 5 results.