A030230 Numbers that have an odd number of distinct prime divisors.
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 37, 41, 42, 43, 47, 49, 53, 59, 60, 61, 64, 66, 67, 70, 71, 73, 78, 79, 81, 83, 84, 89, 90, 97, 101, 102, 103, 105, 107, 109, 110, 113, 114, 120, 121, 125, 126, 127, 128, 130, 131, 132, 137, 138, 139, 140, 149
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Mats Granvik, Mathematica program to compute the relation to the Dirichlet inverse of the Euler totient function
- H. Helfgott and A. Ubis, Primos, paridad y análisis, arXiv:1812.08707 [math.NT], Dec. 2018.
Crossrefs
Programs
-
Haskell
a030230 n = a030230_list !! (n-1) a030230_list = filter (odd . a001221) [1..] -- Reinhard Zumkeller, Aug 14 2011
-
Maple
q:= n-> is(nops(ifactors(n)[2])::odd): select(q, [$1..150])[]; # Alois P. Heinz, Feb 12 2021
-
Mathematica
(* Prior to version 7.0 *) littleOmega[n_] := Length[FactorInteger[n]]; Select[ Range[2, 149], (-1)^littleOmega[#] == -1 &] (* Jean-François Alcover, Nov 30 2011, after Benoit Cloitre *) (* Version 7.0+ *) Select[Range[2, 149], (-1)^PrimeNu[#] == -1 &] Select[Range[1000],OddQ[PrimeNu[#]]&] (* Harvey P. Dale, Nov 27 2012 *)
-
PARI
is(n)=omega(n)%2 \\ Charles R Greathouse IV, Sep 14 2015
Formula
From Benoit Cloitre, Dec 08 2002: (Start)
k such that Sum_{d|k} mu(d)*tau(d) = (-1)^omega(k) = -1 where mu(d) = A008683(d), tau(d) = A000005(d) and omega(d) = A001221(d).
k such that A023900(k) < 0. (End)
A076479(a(n)) = -1. - Reinhard Zumkeller, Jun 01 2013