cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030230 Numbers that have an odd number of distinct prime divisors.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 37, 41, 42, 43, 47, 49, 53, 59, 60, 61, 64, 66, 67, 70, 71, 73, 78, 79, 81, 83, 84, 89, 90, 97, 101, 102, 103, 105, 107, 109, 110, 113, 114, 120, 121, 125, 126, 127, 128, 130, 131, 132, 137, 138, 139, 140, 149
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a030230 n = a030230_list !! (n-1)
    a030230_list = filter (odd . a001221) [1..]
    -- Reinhard Zumkeller, Aug 14 2011
    
  • Maple
    q:= n-> is(nops(ifactors(n)[2])::odd):
    select(q, [$1..150])[];  # Alois P. Heinz, Feb 12 2021
  • Mathematica
    (* Prior to version 7.0 *) littleOmega[n_] := Length[FactorInteger[n]]; Select[ Range[2, 149], (-1)^littleOmega[#] == -1 &] (* Jean-François Alcover, Nov 30 2011, after Benoit Cloitre *)
    (* Version 7.0+ *) Select[Range[2, 149], (-1)^PrimeNu[#] == -1 &]
    Select[Range[1000],OddQ[PrimeNu[#]]&] (* Harvey P. Dale, Nov 27 2012 *)
  • PARI
    is(n)=omega(n)%2 \\ Charles R Greathouse IV, Sep 14 2015

Formula

From Benoit Cloitre, Dec 08 2002: (Start)
k such that Sum_{d|k} mu(d)*tau(d) = (-1)^omega(k) = -1 where mu(d) = A008683(d), tau(d) = A000005(d) and omega(d) = A001221(d).
k such that A023900(k) < 0. (End)
gcd(A008472(a(n)), A007947(a(n))) > 1; see A014963. - Labos Elemer, Mar 26 2003
A076479(a(n)) = -1. - Reinhard Zumkeller, Jun 01 2013