A030231 Numbers with an even number of distinct prime factors.
1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 36, 38, 39, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 68, 69, 72, 74, 75, 76, 77, 80, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100, 104, 106, 108, 111, 112, 115, 116, 117, 118, 119
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- H. Helfgott and A. Ubis, Primos, paridad y anĂ¡lisis, arXiv:1812.08707 [math.NT], Dec. 2018.
Crossrefs
Programs
-
Haskell
a030231 n = a030231_list !! (n-1) a030231_list = filter (even . a001221) [1..] -- Reinhard Zumkeller, Mar 26 2013
-
Mathematica
Select[Range[200],EvenQ[PrimeNu[#]]&] (* Harvey P. Dale, Jun 22 2011 *)
-
PARI
j=[]; for(n=1,200,x=omega(n); if(Mod(x,2)==0,j=concat(j,n))); j
-
PARI
is(n)=omega(n)%2==0 \\ Charles R Greathouse IV, Sep 14 2015
Formula
From Benoit Cloitre, Dec 08 2002: (Start)
k such that Sum_{d|k} mu(d)*A000005(d) = (-1)^omega(k) = +1 where mu(d)=A008683(d), and omega(d)=A001221(d).
k such that A023900(k) > 0. (End)
Extensions
Corrected by Dan Pritikin (pritikd(AT)muohio.edu), May 29 2002
Comments