cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030231 Numbers with an even number of distinct prime factors.

Original entry on oeis.org

1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 36, 38, 39, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 68, 69, 72, 74, 75, 76, 77, 80, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100, 104, 106, 108, 111, 112, 115, 116, 117, 118, 119
Offset: 1

Views

Author

Keywords

Comments

Gcd(A008472(a(n)), A007947(a(n)))=1; see A014963. - Labos Elemer, Mar 26 2003
Superset of A007774. - R. J. Mathar, Oct 23 2008
A076479(a(n)) = +1. - Reinhard Zumkeller, Jun 01 2013
Union of the rows of A125666 with even indices. - R. J. Mathar, Jul 19 2023

Crossrefs

Programs

  • Haskell
    a030231 n = a030231_list !! (n-1)
    a030231_list = filter (even . a001221) [1..]
    -- Reinhard Zumkeller, Mar 26 2013
  • Mathematica
    Select[Range[200],EvenQ[PrimeNu[#]]&] (* Harvey P. Dale, Jun 22 2011 *)
  • PARI
    j=[]; for(n=1,200,x=omega(n); if(Mod(x,2)==0,j=concat(j,n))); j
    
  • PARI
    is(n)=omega(n)%2==0 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

From Benoit Cloitre, Dec 08 2002: (Start)
k such that Sum_{d|k} mu(d)*A000005(d) = (-1)^omega(k) = +1 where mu(d)=A008683(d), and omega(d)=A001221(d).
k such that A023900(k) > 0. (End)
Union of A007774, A033993, A074969,... - R. J. Mathar, Jul 22 2025

Extensions

Corrected by Dan Pritikin (pritikd(AT)muohio.edu), May 29 2002