cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A030059 Numbers that are the product of an odd number of distinct primes.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 42, 43, 47, 53, 59, 61, 66, 67, 70, 71, 73, 78, 79, 83, 89, 97, 101, 102, 103, 105, 107, 109, 110, 113, 114, 127, 130, 131, 137, 138, 139, 149, 151, 154, 157, 163, 165, 167, 170, 173, 174, 179, 181, 182, 186, 190, 191, 193
Offset: 1

Views

Author

Keywords

Comments

From Enrique Pérez Herrero, Jul 06 2012: (Start)
This sequence and A030229 partition the squarefree numbers: A005117.
Also solutions to the equation mu(n) = -1.
Sum_{n>=1} 1/a(n)^s = (zeta(s)^2 - zeta(2*s))/(2*zeta(s)*zeta(2*s)). (End) [See A088245 and the Hardy reference. - Wolfdieter Lang, Oct 18 2016]
The lexicographically least sequence of integers > 1 such that for each entry, the number of proper divisors occurring in the sequence is equal to 0 modulo 3. - Masahiko Shin, Feb 12 2018
The asymptotic density of this sequence is 3/Pi^2 (A104141). - Amiram Eldar, May 22 2020
Solutions to the equation Sum_{d|n} mu(d)*sigma(d) = -n, where sigma(n) is the sum of divisors function (A000203). - Robert D. Rosales, May 20 2024

References

  • B. C. Berndt & R. A. Rankin, Ramanujan: Letters and Commentary, see p. 23; AMS Providence RI 1995.
  • G. H. Hardy, Ramanujan, AMS Chelsea Publishing, 2002, pp. 64 - 65, (misprint on p. 65, line starting with Hence: it should be ... -1/Zeta(s) not ... -Zeta(s)).
  • S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, p. xxiv, 21.

Crossrefs

Programs

  • Maple
    a := n -> `if`(numtheory[mobius](n)=-1,n,NULL); seq(a(i),i=1..193); # Peter Luschny, May 04 2009
    # alternative
    A030059 := proc(n)
        option remember;
        local a;
        if n = 1 then
            2;
        else
            for a from procname(n-1)+1 do
                if numtheory[mobius](a) = -1 then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Sep 22 2020
  • Mathematica
    Select[Range[300], MoebiusMu[#] == -1 &] (* Enrique Pérez Herrero, Jul 06 2012 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); #f%2 && vecmax(f)==1 \\ Charles R Greathouse IV, Oct 16 2015
    
  • PARI
    is(n)=moebius(n)==-1 \\ Charles R Greathouse IV, Jan 31 2017
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A030059(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-primepi(x)-sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(3,x.bit_length(),2)))
        kmin, kmax = 0,1
        while f(kmax) > kmax:
            kmax <<= 1
        while kmax-kmin > 1:
            kmid = kmax+kmin>>1
            if f(kmid) <= kmid:
                kmax = kmid
            else:
                kmin = kmid
        return kmax # Chai Wah Wu, Aug 29 2024

Formula

omega(a(n)) = A001221(a(n)) gives A005408. {primes A000040} UNION {sphenic numbers A007304} UNION {numbers that are divisible by exactly 5 different primes A051270} UNION {products of 7 distinct primes (squarefree 7-almost primes) A123321} UNION {products of 9 distinct primes; also n has exactly 9 distinct prime factors and n is squarefree A115343} UNION.... - Jonathan Vos Post, Oct 19 2007
a(n) < n*Pi^2/3 infinitely often; a(n) > n*Pi^2/3 infinitely often. - Charles R Greathouse IV, Sep 07 2017

Extensions

More terms from David W. Wilson

A076479 a(n) = mu(rad(n)), where mu is the Moebius-function (A008683) and rad is the radical or squarefree kernel (A007947).

Original entry on oeis.org

1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 14 2002

Keywords

Comments

Multiplicative: a(1) = 1, a(n) for n >=2 is sign of parity of number of distinct primes dividing n. a(p) = -1, a(pq) = 1, a(pq...z) = (-1)^k, a(p^k) = -1, where p,q,.. z are distinct primes and k natural numbers. - Jaroslav Krizek, Mar 17 2009
a(n) is the unitary Moebius function, i.e., the inverse of the constant 1 function under the unitary convolution defined by (f X g)(n)= sum of f(d)g(n/d), where the sum is over the unitary divisors d of n (divisors d of n such that gcd(d,n/d)=1). - Laszlo Toth, Oct 08 2009

Crossrefs

Programs

  • Haskell
    a076479 = a008683 . a007947  -- Reinhard Zumkeller, Jun 01 2013
    
  • Magma
    [(-1)^(#PrimeDivisors(n)): n in [1..100]]; // Vincenzo Librandi, Dec 31 2018
    
  • Maple
    A076479 := proc(n)
        (-1)^A001221(n) ;
    end proc:
    seq(A076479(n),n=1..80) ; # R. J. Mathar, Nov 02 2016
  • Mathematica
    Table[(-1)^PrimeNu[n], {n,50}] (* Enrique Pérez Herrero, Jan 17 2013 *)
  • PARI
    N=66;
    mu=vector(N); mu[1]=1;
    { for (n=2,N,
        s = 0;
        fordiv (n,d,
            if (gcd(d,n/d)!=1, next() ); /* unitary divisors only */
            s += mu[d];
        );
        mu[n] = -s;
    ); };
    mu /* Joerg Arndt, May 13 2011 */
    /* omitting the line if ( gcd(...)) gives the usual Moebius function */
    
  • PARI
    a(n)=(-1)^omega(n) \\ Charles R Greathouse IV, Aug 02 2013
    
  • Python
    from math import prod
    from sympy.ntheory import mobius, primefactors
    def A076479(n): return mobius(prod(primefactors(n))) # Chai Wah Wu, Sep 24 2021

Formula

a(n) = A008683(A007947(n)).
a(n) = (-1)^A001221(n). Multiplicative with a(p^e) = -1. - Vladeta Jovovic, Dec 03 2002
a(n) = sign(A180403(n)). - Mats Granvik, Oct 08 2010
Sum_{n>=1} a(n)*phi(n)/n^3 = A065463 with phi()=A000010() [Cohen, Lemma 3.5]. - R. J. Mathar, Apr 11 2011
Dirichlet convolution of A000012 with A226177 (signed variant of A074823 with one factor mu(n) removed). - R. J. Mathar, Apr 19 2011
Sum_{n>=1} a(n)/n^2 = A065469. - R. J. Mathar, Apr 19 2011
a(n) = Sum_{d|n} mu(d)*tau_2(d) = Sum_{d|n} A008683(d)*A000005(d) . - Enrique Pérez Herrero, Jan 17 2013
a(A030230(n)) = -1; a(A030231(n)) = +1. - Reinhard Zumkeller, Jun 01 2013
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 - 2p^(-s)). - Álvar Ibeas, Dec 30 2018
Sum_{n>=1} a(n)/n = 0 (van de Lune and Dressler, 1975). - Amiram Eldar, Mar 05 2021
From Richard L. Ollerton, May 07 2021: (Start)
For n>1, Sum_{k=1..n} a(gcd(n,k))*phi(gcd(n,k))*rad(gcd(n,k))/gcd(n,k) = 0.
For n>1, Sum_{k=1..n} a(n/gcd(n,k))*phi(gcd(n,k))*rad(n/gcd(n,k))*gcd(n,k) = 0. (End)
a(n) = Sum_{d1|n} Sum_{d2|n} mu(d1*d2). - Ridouane Oudra, May 25 2023

A000379 Numbers where total number of 1-bits in the exponents of their prime factorization is even; a 2-way classification of integers: complement of A000028.

Original entry on oeis.org

1, 6, 8, 10, 12, 14, 15, 18, 20, 21, 22, 26, 27, 28, 32, 33, 34, 35, 36, 38, 39, 44, 45, 46, 48, 50, 51, 52, 55, 57, 58, 62, 63, 64, 65, 68, 69, 74, 75, 76, 77, 80, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 100, 106, 111, 112, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 129
Offset: 1

Views

Author

Keywords

Comments

This sequence and A000028 (its complement) give the unique solution to the problem of splitting the positive integers into two classes in such a way that products of pairs of distinct elements from either class occur with the same multiplicities [Lambek and Moser]. Cf. A000069, A001969.
See A000028 for precise definition, Maple program, etc.
The sequence contains products of even number of distinct terms of A050376. - Vladimir Shevelev, May 04 2010
From Vladimir Shevelev, Oct 28 2013: (Start)
Numbers m such that the infinitary Möbius function (A064179) of m equals 1. (This follows from the definition of A064179.)
A number m is in the sequence iff the number k = k(m) of terms of A050376 that divide m with odd maximal exponent is even (see example).
(End)
Numbers k for which A064547(k) [or equally, A268386(k)] is even. Numbers k for which A010060(A268387(k)) = 0. - Antti Karttunen, Feb 09 2016
The sequence is closed under the commutative binary operation A059897(.,.). As integers are self-inverse under A059897(.,.), it therefore forms a subgroup of the positive integers considered as a group under A059897(.,.). Specifically (expanding on the comment above dated May 04 2010) it is the subgroup of even length words in A050376, which is the group's lexicographically earliest ordered minimal set of generators. A000028, the set of odd length words in A050376, is its complementary coset. - Peter Munn, Nov 01 2019
From Amiram Eldar, Oct 02 2024: (Start)
Numbers whose number of infinitary divisors (A037445) is a square.
Numbers whose exponentially odious part (A367514) has an even number of distinct prime factors, i.e., numbers k such that A092248(A367514(k)) = 0. (End)

Examples

			If m = 120, then the maximal exponent of 2 that divides 120 is 3, for 3 it is 1, for 4 it is 1, for 5 it is 1. Thus k(120) = 4 and 120 is a term. - _Vladimir Shevelev_, Oct 28 2013
		

References

  • Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 22.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequences: A030229, A238748, A262675, A268390.
Subsequence of A268388 (apart from the initial 1).
Complement: A000028.
Sequences used in definitions of this sequence: A133008, A050376, A059897, A064179, A064547, A124010 (prime exponents), A268386, A268387, A010060.
Other 2-way classifications: A000069/A001969 (to which A000120 and A010060 are relevant), A000201/A001950.
This is different from A123240 (e.g., does not contain 180). The first difference occurs already at n=31, where A123240(31) = 60, a value which does not occur here, as a(31+1) = 62. The same is true with respect to A131181, as A131181(31) = 60.

Programs

  • Haskell
    a000379 n = a000379_list !! (n-1)
    a000379_list = filter (even . sum . map a000120 . a124010_row) [1..]
    -- Reinhard Zumkeller, Oct 05 2011
    
  • Mathematica
    Select[ Range[130], EvenQ[ Count[ Flatten[ IntegerDigits[#, 2]& /@ Transpose[ FactorInteger[#]][[2]]], 1]]&] // Prepend[#, 1]& (* Jean-François Alcover, Apr 11 2013, after Harvey P. Dale *)
  • PARI
    is(n)=my(f=factor(n)[,2]); sum(i=1,#f,hammingweight(f[i]))%2==0 \\ Charles R Greathouse IV, Aug 31 2013
    (Scheme, two variants)
    (define A000379 (MATCHING-POS 1 1 (COMPOSE even? A064547)))
    (define A000379 (MATCHING-POS 1 1 (lambda (n) (even? (A000120 (A268387 n))))))
    ;; Both require also my IntSeq-library. - Antti Karttunen, Feb 09 2016

Extensions

Edited by N. J. A. Sloane, Dec 20 2007, to restore the original definition.

A030230 Numbers that have an odd number of distinct prime divisors.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 37, 41, 42, 43, 47, 49, 53, 59, 60, 61, 64, 66, 67, 70, 71, 73, 78, 79, 81, 83, 84, 89, 90, 97, 101, 102, 103, 105, 107, 109, 110, 113, 114, 120, 121, 125, 126, 127, 128, 130, 131, 132, 137, 138, 139, 140, 149
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a030230 n = a030230_list !! (n-1)
    a030230_list = filter (odd . a001221) [1..]
    -- Reinhard Zumkeller, Aug 14 2011
    
  • Maple
    q:= n-> is(nops(ifactors(n)[2])::odd):
    select(q, [$1..150])[];  # Alois P. Heinz, Feb 12 2021
  • Mathematica
    (* Prior to version 7.0 *) littleOmega[n_] := Length[FactorInteger[n]]; Select[ Range[2, 149], (-1)^littleOmega[#] == -1 &] (* Jean-François Alcover, Nov 30 2011, after Benoit Cloitre *)
    (* Version 7.0+ *) Select[Range[2, 149], (-1)^PrimeNu[#] == -1 &]
    Select[Range[1000],OddQ[PrimeNu[#]]&] (* Harvey P. Dale, Nov 27 2012 *)
  • PARI
    is(n)=omega(n)%2 \\ Charles R Greathouse IV, Sep 14 2015

Formula

From Benoit Cloitre, Dec 08 2002: (Start)
k such that Sum_{d|k} mu(d)*tau(d) = (-1)^omega(k) = -1 where mu(d) = A008683(d), tau(d) = A000005(d) and omega(d) = A001221(d).
k such that A023900(k) < 0. (End)
gcd(A008472(a(n)), A007947(a(n))) > 1; see A014963. - Labos Elemer, Mar 26 2003
A076479(a(n)) = -1. - Reinhard Zumkeller, Jun 01 2013

A360554 Numbers > 1 whose unordered prime signature has non-integer median.

Original entry on oeis.org

12, 18, 20, 28, 44, 45, 48, 50, 52, 63, 68, 72, 75, 76, 80, 92, 98, 99, 108, 112, 116, 117, 124, 147, 148, 153, 162, 164, 171, 172, 175, 176, 188, 192, 200, 207, 208, 212, 236, 242, 244, 245, 261, 268, 272, 275, 279, 284, 288, 292, 304, 316, 320, 325, 332, 333
Offset: 1

Views

Author

Gus Wiseman, Feb 16 2023

Keywords

Comments

First differs from A187039 in having 2520 and lacking 1 and 12600.
A number's unordered prime signature (row n of A118914) is the multiset of positive exponents in its prime factorization.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The unordered prime signature of 2520 is {3,2,1,1}, with median 3/2, so 2520 is in the sequence.
The unordered prime signature of 12600 is {3,2,2,1}, with median 2, so 12600 is not in the sequence.
		

Crossrefs

A subset of A030231.
For mean instead of median we have A070011.
Positions of odd terms in A360460.
The complement is A360553 (without 1), counted by A360687.
- For divisors (A063655) we have A139710, complement A139711.
- For prime indices (A360005) we have A359912, complement A359908.
- For distinct prime indices (A360457) we have A360551 complement A360550.
- For distinct prime factors (A360458) we have A100367, complement A360552.
- For prime factors (A360459) we have A072978, complement A359913.
- For prime multiplicities (A360460) we have A360554, complement A360553.
- For 0-prepended differences (A360555) we have A360557, complement A360556.
A112798 lists prime indices, length A001222, sum A056239.
A325347 = partitions w/ integer median, complement A307683, strict A359907.
A326619/A326620 gives mean of distinct prime indices.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Select[Range[2,100],!IntegerQ[Median[Last/@FactorInteger[#]]]&]

A285798 Number of partitions of n into parts with an even number of distinct prime divisors.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 5, 5, 6, 7, 8, 8, 11, 11, 14, 16, 19, 19, 25, 26, 31, 34, 40, 41, 51, 53, 62, 68, 80, 85, 103, 107, 124, 135, 157, 166, 195, 205, 235, 256, 294, 311, 362, 383, 437, 472, 535, 568, 652, 695, 786, 847, 954, 1016, 1155, 1231, 1381, 1486, 1662, 1774, 1997, 2130, 2377, 2557, 2846
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 26 2017

Keywords

Examples

			a(10) = 3 because we have [10], [6, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Cf. A030231, A087153 (number of partitions into parts with an even number of divisors), A285799.

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Product[1/(1 - Boole[EvenQ[PrimeNu[k]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^A030231(k)).

A348097 Numbers having equally many unitary and nonunitary prime divisors.

Original entry on oeis.org

1, 12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 63, 68, 75, 76, 80, 88, 92, 96, 98, 99, 104, 112, 116, 117, 124, 135, 136, 147, 148, 152, 153, 160, 162, 164, 171, 172, 175, 176, 184, 188, 189, 192, 207, 208, 212, 224, 232, 236, 242, 244, 245, 248, 250, 261
Offset: 1

Views

Author

Amiram Eldar, Sep 30 2021

Keywords

Comments

A prime divisor of k is unitary if its exponent in the prime factorization of k is 1, and is nonunitary otherwise.
Numbers k such that A056169(k) = A056170(k) = A001221(k)/2.
A345381 is a subsequence. After a(1) = 1, a(238) = 1260 is the next term that is not in A345381.

Examples

			12 = 2^2 * 3 is a term since it has one unitary prime divisor (3) and one nonunitary prime divisor (2).
		

Crossrefs

Subsequence of A030231.
Similar sequences: A016825 (odd and even divisors), A048109, A187039.

Programs

  • Mathematica
    q[n_] := n == 1 || Count[(e = FactorInteger[n][[;; , 2]]), 1] == Length[e]/2; Select[Range[300], q]

A123066 (Number of numbers <= n with an odd number of distinct prime factors) - (number of numbers <= n with an even number of distinct prime factors).

Original entry on oeis.org

0, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 5, 6, 5, 4, 5, 6, 5, 6, 5, 4, 3, 4, 3, 4, 3, 4, 3, 4, 5, 6, 7, 6, 5, 4, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 1, 2, 1, 0, -1, 0, -1, -2, -3, -4, -5, -4, -3, -2, -3, -4, -3, -4, -3, -2, -3, -4, -3, -2, -3, -2, -3, -4, -5, -6, -5, -4, -5, -4, -5, -4, -3, -4, -5, -6, -7, -6, -5, -6, -7, -8, -9, -10
Offset: 1

Views

Author

Keywords

Comments

Analog of A072203 for number of distinct factors. Conjecture that sequence changes sign infinitely often, although the next sign change is probably large.
The signs first change at n = 52 and then change again at n = 7954. - Harvey P. Dale, Jul 04 2012

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 0, a(n-1)+
          `if`(nops(ifactors(n)[2])::odd, 1, -1))
        end:
    seq(a(n), n=1..120);  # Alois P. Heinz, Dec 21 2018
  • Mathematica
    dpf[n_] := Module[{df = PrimeNu[n]}, If[OddQ[df], 1, -1]]; Join[{0}, Accumulate[ Array[dpf, 100, 2]]] (* Harvey P. Dale, Jul 04 2012 *)
  • Python
    from sympy import primenu
    def A123066(n): return 1+sum(1 if primenu(i)&1 else -1 for i in range(1,n+1)) # Chai Wah Wu, Dec 31 2022

Formula

a(n) = Sum_{k>=1} (-1)^(k-1) * A346617(n,k). - Alois P. Heinz, Aug 19 2021

A267114 Numbers n for which A001222(n) = A267115(n) + A267116(n).

Original entry on oeis.org

1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 36, 38, 39, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 68, 69, 72, 74, 75, 76, 77, 80, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100, 104, 106, 108, 111, 112, 115, 116, 117, 118, 119, 122, 123, 124, 129, 133, 134, 135, 136, 141, 142, 143, 144
Offset: 1

Views

Author

Antti Karttunen, Feb 03 2016

Keywords

Examples

			6 = 2^1 * 3^1 is included as bitwise-or of its exponents is 1 and likewise bitwise-and(1,1) = 1 and 1+1 = A001222(6) = 2, the number of the prime factors of 6 when counted with multiplicity.
12 = 2^2 * 3^1 is included as bitwise-or of its exponents ("10" and "01" in binary) is 3 ("11"), bitwise-and(1,2) = 0 and 3+0 = A001222(12).
60 = 2^2 * 3^1 * 5^1 is NOT included as bitwise-or(2,1,1) = 3, bitwise-and(2,1,1) = 0 and 3+0 < 4 = A001222(60).
		

Crossrefs

Differs from A030231 for the first time at n=118, where A030231(118) = 210 (= 2*3*5*7), which term is missing from this sequence.
a(n+1) differs from A007774 for the first time at n=375, as a(376) = 720 = 2^4 * 3^2 * 5^1.
Cf. A007774 (subsequence).

Programs

  • Mathematica
    {1}~Join~Select[Range@ 144, Function[n, PrimeOmega@ n == BitAnd @@ # + BitOr @@ # &@ Map[Last, FactorInteger@ n]]] (* Michael De Vlieger, Feb 07 2016 *)
  • PARI
    is(n)=if(n>1, my(f=factor(n)[,2]); fold(bitand, f) + fold(bitor, f) == vecsum(f), 1) \\ Charles R Greathouse IV, Aug 04 2016

Extensions

Erroneous claim corrected by Antti Karttunen, Feb 07 2016

A286221 Number of partitions of n into distinct parts with an even number of distinct prime divisors.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 4, 4, 2, 3, 4, 4, 5, 6, 5, 5, 6, 7, 9, 10, 10, 12, 11, 11, 15, 16, 15, 17, 18, 19, 23, 26, 25, 27, 30, 33, 37, 38, 39, 46, 50, 52, 57, 59, 61, 71, 77, 78, 84, 91, 97, 107, 114, 120, 131, 139, 147, 163, 172, 180, 197
Offset: 0

Views

Author

Ilya Gutkovskiy, May 04 2017

Keywords

Examples

			a(21) = 4 because we have [21], [20, 1], [15, 6] and [14, 6, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[Product[1 + Boole[EvenQ[PrimeNu[k]]] x^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^A030231(k)).
Showing 1-10 of 21 results. Next