cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030273 Number of partitions of n^2 into distinct squares.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 3, 4, 2, 7, 8, 12, 13, 16, 25, 28, 55, 51, 91, 90, 158, 176, 288, 297, 487, 521, 847, 908, 1355, 1580, 2175, 2744, 3636, 4452, 5678, 7385, 9398, 11966, 14508, 19322, 23065, 31301, 36177, 49080, 57348, 77446, 91021, 121113, 141805
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a030273 n = p (map (^ 2) [1..]) (n^2) where
       p _  0 = 1
       p (k:ks) m | m < k     = 0
                  | otherwise = p ks (m - k) + p ks m
    -- Reinhard Zumkeller, Aug 14 2011
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(n>i*(i+1)*(2*i+1)/6, 0, b(n, i-1)+
          `if`(i^2>n, 0, b(n-i^2, i-1))))
        end:
    a:= n-> b(n^2, n):
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 20 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[n > i*(i+1)*(2*i+1)/6, 0, b[n, i-1] +If[i^2 > n, 0, b[n-i^2, i-1]]]]; a[n_] := b[n^2, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 30 2015, after Alois P. Heinz *)

Formula

a(n) = [x^(n^2)] Product_{k>=1} (1 + x^(k^2)). - Ilya Gutkovskiy, Apr 13 2017

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 18 2015