A030273 Number of partitions of n^2 into distinct squares.
1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 3, 4, 2, 7, 8, 12, 13, 16, 25, 28, 55, 51, 91, 90, 158, 176, 288, 297, 487, 521, 847, 908, 1355, 1580, 2175, 2744, 3636, 4452, 5678, 7385, 9398, 11966, 14508, 19322, 23065, 31301, 36177, 49080, 57348, 77446, 91021, 121113, 141805
Offset: 0
Keywords
Links
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..1000 (terms 0..750 from Alois P. Heinz)
Programs
-
Haskell
a030273 n = p (map (^ 2) [1..]) (n^2) where p _ 0 = 1 p (k:ks) m | m < k = 0 | otherwise = p ks (m - k) + p ks m -- Reinhard Zumkeller, Aug 14 2011
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(n>i*(i+1)*(2*i+1)/6, 0, b(n, i-1)+ `if`(i^2>n, 0, b(n-i^2, i-1)))) end: a:= n-> b(n^2, n): seq(a(n), n=0..50); # Alois P. Heinz, Nov 20 2012
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[n > i*(i+1)*(2*i+1)/6, 0, b[n, i-1] +If[i^2 > n, 0, b[n-i^2, i-1]]]]; a[n_] := b[n^2, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 30 2015, after Alois P. Heinz *)
Formula
a(n) = [x^(n^2)] Product_{k>=1} (1 + x^(k^2)). - Ilya Gutkovskiy, Apr 13 2017
Extensions
a(0)=1 prepended by Alois P. Heinz, Feb 18 2015